|
Физическая организация файловой системы
Физическая организация файловой системы
СОДЕРЖАНИЕ - 1. ФИЗИЧЕСКАЯ ОРГАНИЗАЦИЯ ФАЙЛОВОЙ СИСТЕМЫ
- 2. ДИСКИ, РАЗДЕЛЫ, СЕКТОРЫ, КЛАСТЕРЫ
- 3. ФЛЭШ-ПАМЯТЬ
- 4. Использованная Литература
- 1. ФИЗИЧЕСКАЯ ОРГАНИЗАЦИЯ ФАЙЛОВОЙ СИСТЕМЫ
- Представление пользователя о файловой системе как об иерархически организованном множестве информационных объектов имеет мало общего с порядком хранения файлов на диске. Файл, имеющий образ цельного, непрерывающегося набора байт, на самом деле очень часто разбросан «кусочками» по всему диску, причем это разбиение никак не связано с логической структурой файла, например, его отдельная логическая запись может быть расположена в несмежных секторах диска. Логически объединенные файлы из одного каталога совсем не обязаны соседствовать на диске. Принципы размещения файлов, каталогов и системной информации на реальном устройстве описываются физической организацией файловой системы. Очевидно, что разные файловые системы имеют разную физическую организацию.
- 2. ДИСКИ, РАЗДЕЛЫ, СЕКТОРЫ, КЛАСТЕРЫ
- Основным типом устройства, которое используется в современных вычислительных системах для хранения файлов, являются дисковые накопители. Эти устройства предназначены для считывания и записи данных на жесткие и гибкие магнитные диски. Жесткий диск состоит из одной или нескольких стеклянных или металлических пластин, каждая из которых покрыта с одной или двух сторон магнитным материалом. Таким образом, диск в общем случае состоит из пакета пластин (рис. 1).
- На каждой стороне каждой пластины размечены тонкие концентрические кольца -- дорожки (traks), на которых хранятся данные. Количество дорожек зависит от типа диска. Нумерация дорожек начинается с 0 от внешнего края к центру диска. Когда диск вращается, элемент, называемый головкой, считывает двоичные данные с магнитной дорожки или записывает их на магнитную дорожку.
- Рис. 1. Схема устройства жесткого диска
- Головка может позиционироваться над заданной дорожкой. Головки перемещаются над поверхностью диска дискретными шагами, каждый шаг соответствует сдвигу на одну дорожку. Запись на диск осуществляется благодаря способности головки изменять магнитные свойства дорожки. В некоторых дисках вдоль каждой поверхности перемещается одна головка, а в других -- имеется по головке на каждую дорожку. В первом случае для поиска информации головка должна перемещаться по радиусу диска. Обычно все головки закреплены на едином перемещающем механизме и двигаются синхронно. Поэтому, когда головка фиксируется на заданной дорожке одной поверхности, все остальные головки останавливаются над дорожками с такими же номерами. В тех же случаях, когда на каждой дорожке имеется отдельная головка, никакого перемещения головок с одной дорожки на другую не требуется, за счет этого экономится время, затрачиваемое на поиск данных.
- Совокупность дорожек одного радиуса на всех поверхностях всех пластин пакета называется цилиндром (cylinder). Каждая дорожка разбивается на фрагменты, называемые секторами (sectors), или блоками (blocks), так что все дорожки имеют равное число секторов, в которые можно максимально записать одно и то же число байт. Сектор имеет фиксированный для конкретной системы размер, выражающийся степенью двойки. Чаще всего размер сектора составляет 512 байт. Учитывая, что дорожки разного радиуса имеют одинаковое число секторов, плотность записи становится тем выше, чем ближе дорожка к центру. Сектор -- наименьшая адресуемая единица обмена данными дискового устройства с оперативной памятью. Для того чтобы контроллер мог найти на диске нужный сектор, необходимо задать ему все составляющие адреса сектора: номер цилиндра, номер поверхности и номер сектора. Так как прикладной программе в общем случае нужен не сектор, а некоторое количество байт, не обязательно кратное размеру сектора, то типичный запрос включает чтение нескольких секторов, содержащих требуемую информацию, и одного или двух секторов, содержащих наряду с требуемыми избыточные данные (рис. 2).
- Рис. 2. Считывание избыточных данных при обмене с диском
- Операционная система при работе с диском использует, как правило, собственную единицу дискового пространства, называемую кластером (cluster). При создании файла место на диске ему выделяется кластерами. Например, если файл имеет размер 2560 байт, а размер кластера в файловой системе определен в 1024 байта, то файлу будет выделено на диске 3 кластера.
- Дорожки и секторы создаются в результате выполнения процедуры физического, или низкоуровневого, форматирования диска, предшествующей использованию диска. Для определения границ блоков на диск записывается идентификационная информация. Низкоуровневый формат диска не зависит от типа операционной системы, которая этот диск будет использовать.
- Разметку диска под конкретный тип файловой системы выполняют процедуры высокоуровневого, или логического, форматирования. При высокоуровневом форматировании определяется размер кластера и на диск записывается информация, необходимая для работы файловой системы, в том числе информация о доступном и неиспользуемом пространстве, о границах областей, отведенных под файлы и каталоги, информация о поврежденных областях. Кроме того, на диск записывается загрузчик операционной системы -- небольшая программа, которая начинает процесс инициализации операционной системы после включения питания или рестарта компьютера.
- Прежде чем форматировать диск под определенную файловую систему, он может быть разбит на разделы. Раздел -- это непрерывная часть физического диска, которую операционная система представляет пользователю как логическое устройство (используются также названия логический диск и логический раздел). Логическое устройство функционирует так, как если бы это был отдельный физический диск. Именно с логическими устройствами работает пользователь, обращаясь к ним по символьным именам, используя, например, обозначения А, В, С, SYS и т. п. Операционные системы разного типа используют единое для всех них представление о разделах, но создают на его основе логические устройства, специфические для каждого типа ОС. Так же как файловая система, с которой работает одна ОС, в общем случае не может интерпретироваться ОС другого типа, логические устройства не могут быть использованы операционными системами разного типа. На каждом логическом устройстве может создаваться только одна файловая система.
- В частном случае, когда все дисковое пространство охватывается одним разделом, логическое устройство представляет физическое устройство в целом. Если диск разбит на несколько разделов, то для каждого из этих разделов может быть создано отдельное логическое устройство. Логическое устройство может быть создано и на базе нескольких разделов, причем эти разделы не обязательно должны принадлежать одному физическому устройству. Объединение нескольких разделов в единое логическое устройство может выполняться разными способами и преследовать разные цели, основные из которых: увеличение общего объема логического раздела, повышение производительности и отказоустойчивости. Примерами организации совместной работы нескольких дисковых разделов являются так называемые RAID-массивы, подробнее о которых будет сказано далее. На разных логических устройствах одного и того же физического диска могут располагаться файловые системы разного типа. На рис. 3 показан пример диска, разбитого на три раздела, в которых установлены две файловых системы NTFS (разделы С и Е) и одна файловая система FAT (раздел D).
- Все разделы одного диска имеют одинаковый размер блока, определенный для данного диска в результате низкоуровневого форматирования. Однако в результате высокоуровневого форматирования в разных разделах одного и того же диска, представленных разными логическими устройствами, могут быть установлены файловые системы, в которых определены кластеры отличающихся размеров.
- Операционная система может поддерживать разные статусы разделов, особым образом отмечая разделы, которые могут быть использованы для загрузки модулей операционной системы, и разделы, в которых можно устанавливать только приложения и хранить файлы данных. Один из разделов диска помечается как загружаемый (или активный) Именно из этого раздела считывается загрузчик операционной системы.
- Рис. 3. Разбиение диска на разделы
- Важным компонентом физической организации файловой системы является физическая организация файла, то есть способ размещения файла на диске. Основными критериями эффективности физической организации файлов являются:
- скорость доступа к данным;
- объем адресной информации файла;
- степень фрагментированности дискового пространства;
- максимально возможный размер файла.
- Непрерывное размещение -- простейший вариант физической организации (рис. 4, а), при котором файлу предоставляется последовательность кластеров диска, образующих непрерывный участок дисковой памяти. Основным достоинством этого метода является высокая скорость доступа, так как затраты на поиск и считывание кластеров файла минимальны. Также минимален объем адресной информации -- достаточно хранить только номер первого кластера и объем файла Данная физическая организация максимально возможный размер файла не ограничивает. Однако этот вариант имеет существенные недостатки, которые затрудняют его применимость на практике, несмотря на всю его логическую простоту. При более пристальном рассмотрении оказывается, что реализовать эту схему не так уж просто Действительно, какого размера должна быть непрерывная область, выделяемая файлу, если файл при каждой модификации может увеличить свой размер? Еще более серьезной проблемой является фрагментация. Спустя некоторое время после создания файловой системы в результате выполнения многочисленных операций создания и удаления файлов пространство диска неминуемо превращается в «лоскутное одеяло», включающее большое число свободных областей небольшого размера. Как всегда бывает при фрагментации, суммарный объем свободной памяти может быть очень большим, а выбрать место для размещения файла целиком невозможно. Поэтому на практике используются методы, в которых файл размещается в нескольких, в общем случае несмежных областях диска.
- Рис. 4. Физическая организация файла: непрерывное размещение (а); связанный список кластеров (б); связанный список индексов (в); перечень номеров кластеров (г)
- Следующий способ физической организации -- размещение файла в виде связанного списка кластеров дисковой памяти (рис. 7.11, б). При таком способе в начале каждого кластера содержится указатель на следующий кластер. В этом случае адресная информация минимальна: расположение файла может быть задано одним числом -- номером первого кластера. В отличие от предыдущего способа каждый кластер может быть присоединен к цепочке кластеров какого-либо файла, следовательно, фрагментация на уровне кластеров отсутствует. Файл может изменять свой размер во время своего существования, наращивая число кластеров. Недостатком является сложность реализации доступа к произвольно заданному месту файла -- чтобы прочитать пятый по порядку кластер файла, необходимо последовательно прочитать четыре первых кластера, прослеживая цепочку номеров кластеров. Кроме того, при этом способе количество данных файла, содержащихся в одном кластере, не равно степени двойки (одно слово израсходовано на номер следующего кластера), а многие программы читают данные кластерами, размер которых равен степени двойки.
- Популярным способом, применяемым, например, в файловой системе FAT, является использование связанного списка индексов (рис. 4, б). Этот способ является некоторой модификацией предыдущего. Файлу также выделяется память в виде связанного списка кластеров. Номер первого кластера запоминается в записи каталога, где хранятся характеристики этого файла. Остальная адресная информация отделена от кластеров файла. С каждым кластером диска связывается некоторый элемент -- индекс. Индексы располагаются в отдельной области диска -- в MS-DOS это таблица FAT (File Allocation Table), занимающая один кластер. Когда память свободна, все индексы имеют нулевое значение. Если некоторый кластер N назначен некоторому файлу, то индекс этого кластера становится равным либо номеру М следующего кластера данного файла, либо принимает специальное значение, являющееся признаком того, что этот кластер является для файла последним. Индекс же предыдущего кластера файла принимает значение N, указывая на вновь назначенный кластер.
- При такой физической организации сохраняются все достоинства предыдущего способа: минимальность адресной информации, отсутствие фрагментации, отсутствие проблем при изменении размера. Кроме того, данный способ обладает дополнительными преимуществами. Во-первых, для доступа к произвольному кластеру файла не требуется последовательно считывать его кластеры, достаточно прочитать только секторы диска, содержащие таблицу индексов, отсчитать нужное количество кластеров файла по цепочке и определить номер нужного кластера. Во-вторых, данные файла заполняют кластер целиком, а значит, имеют объем, равный степени двойки.
- ПРИМЕЧАНИЕ
- Необходимо отметить, что при отсутствии фрагментации на уровне кластеров на диске все равно имеется определенное количество областей памяти небольшого размера, которые невозможно использовать, то есть фрагментация все же существует. Эти фрагменты представляют собой неиспользуемые части последних кластеров, назначенных файлам, поскольку объем файла в общем случае не кратен размеру кластера. На каждом файле в среднем теряется половина кластера. Это потери особенно велики, когда на диске имеется большое количество маленьких файлов, а кластер имеет большой размер. Размеры кластеров зависят от размера раздела и типа файловой системы Примерный диапазон, в котором может меняться размер кластера, составляет от 512 байт до десятков килобайт.
- Еще один способ задания физического расположения файла заключается в простом перечислении номеров кластеров, занимаемых этим файлом (рис. 4, г). Этот перечень и служит адресом файла. Недостаток данного способа очевиден: длина адреса зависит от размера файла и для большого файла может составить значительную величину. Достоинством же является высокая скорость доступа к произвольному кластеру файла, так как здесь применяется прямая адресация, которая исключает просмотр цепочки указателей при поиске адреса произвольного кластера файла. Фрагментация на уровне кластеров в этом способе также отсутствует.
- Последний подход с некоторыми модификациями используется в традиционных файловых системах ОС UNIX s5 и ufs. Для сокращения объема адресной информации прямой способ адресации сочетается с косвенным.
- В стандартной на сегодняшний день для UNIX файловой системе ufs используется следующая схема адресации кластеров файла. Для хранения адреса файла выделено 15 полей, каждое из которых состоит из 4 байт (рис. 5). Если размер файла меньше или равен 12 кластерам, то номера этих кластеров непосредственно перечисляются в первых двенадцати полях адреса. Если кластер имеет размер 8 Кбайт (максимальный размер кластера, поддерживаемого в ufs), то таким образом можно адресовать файл размером до 8192x12 = 98 304 байт.
- Рис. 5. Схема адресации файловой системы ufs
- Если размер файла превышает 12 кластеров, то следующее 13-е поле содержит адрес кластера, в котором могут быть расположены номера следующих кластеров файла. Таким образом, 13-й элемент адреса используется для косвенной адресации. При размере в 8 Кбайт кластер, на который указывает 13-й элемент, может содержать 2048 номеров следующих кластеров данных файла и размер файла может возрасти до 8192*(12+2048)=16 875 520 байт.
- Если размер файла превышает 12+2048 = 2060 кластеров, то используется 14-е поле, в котором находится номер кластера, содержащего 2048 номеров кластеров, каждый из которых хранят 2048 номеров кластеров данных файла. Здесь применяется уже двойная косвенная адресация. С ее помощью можно адресовать кластеры в файлах, содержащих до 8192*(12+2048+20482) - 3,43766*1O10 байт.
- И наконец, если файл включает более 12+2048+20482 = 4 196 364 кластеров, то используется последнее 15-е поле для тройной косвенной адресации, что позволяет задать адрес файла, имеющего следующий максимальный размер:
- 8192*(12+2048+20482+20483)=7,0403*1013байт.
- Таким образом, файловая система ufs при размере кластера в 8 Кбайт поддерживает файлы, состоящие максимум из 70 триллионов байт данных, хранящихся в 8 миллиардах кластеров. Как видно на рис 7.12, для задания адресной информации о максимально большом файле требуется: 15 элементов по 4 байта (60 байт) в центральной части адреса плюс 1+(1+2048)+(1+2048+20482) -4198403 кластера в косвенной части адреса. Несмотря на огромную величину, это число составляет всего около 0,05 % от объема адресуемых данных.
- Файловая система ufs поддерживает дисковые кластеры и меньших размеров, при этом максимальный размер файла будет другим. Используемая в более ранних версиях UNIX файловая система s5 имеет аналогичную схему адресации, но она рассчитана на файлы меньших размеров, поэтому в ней используется 13 адресных элементов вместо 15.
- Метод перечисления адресов кластеров файла задействован и в файловой системе NTFS, используемой в ОС Windows NT/2000. Здесь он дополнен достаточно естественным приемом, сокращающим объем адресной информации: адресуются не кластеры файла, а непрерывные области, состоящие из смежных кластеров диска. Каждая такая область, называемая отрезком (run), или экстентом (extent), описывается с помощью двух чисел: начального номера кластера и количества кластеров в отрезке. Так как для сокращения времени операции обмена ОС старается разместить файл в последовательных кластерах диска, то в большинстве случаев количество последовательных областей файла будет меньше количества кластеров файла и объем служебной адресной информации в NTFS сокращается по сравнению со схемой адресации файловых систем ufs/s5.
- Для того чтобы корректно принимать решение о выделении файлу набора кластеров, файловая система должна отслеживать информацию о состоянии всех кластеров диска: свободен/занят. Эта информация может храниться как отдельно от адресной информации файлов, так и вместе с ней.
- 3. ФЛЭШ-ПАМЯТЬ
- Как показывают первые результаты тестирования SSD-дисков различных производителей, преимущество SSD-дисков над традиционными HDD-дисками отнюдь не очевидно, особенно если речь идет об операции выборочной (случайной) записи. Кроме того, до сих пор одним из наиболее слабых мест SSD-дисков является количество циклов перезаписи памяти.
- Проблема заключается в том, что флэш-память типа NAND может выдержать порядка 100 тыс. циклов перезаписи информации. Для того чтобы оценить время жизни (время наработки на отказ) флэш-памяти, в которой не используются специальные технологии его продления, рассмотрим простейший случай, когда каждый логический сектор флэш-памяти жестко связан с физическим сектором. Напомним, что логический сектор -- это минимальный объем памяти, доступный операционной системе. Для всех операционных систем логический сектор флэш-памяти составляет 512 байт. Под физическим сектором флэш-памяти понимают наименьший размер доступной для записи физической памяти. В случае если необходимо обновить содержимое логического сектора, первоначально нужно стереть информацию соответствующего физического сектора. Кроме того, во флэш-памяти различают еще и минимальный физический блок стираемой памяти (Physical Erase Unit), то есть блок памяти, который может быть стерт за одну операцию. Один Physical Erase Unit может содержать несколько физических секторов памяти.
- Теперь рассмотрим случай, когда в ОС используется файловая система FAT. В этом случае при операциях записи на флэш-память FAT-таблицы будут постоянно модифицироваться. Проблема в том, что FAT-таблицы располагаются в строго определенном месте, то есть всегда соотносятся с одними и теми же логическими секторами памяти, а следовательно, с одними и теми же физическими секторами. Но часто повторяющиеся операции перезаписи одних и тех же физических секторов флэш-памяти приводят к тому, что время жизни всей памяти существенно сокращается.
- ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА
- 1. Операционные системы Попов, Партыка
|
|