Рефераты
 

Основные компоненты ЭВМ. Идеи и основы сети Интернет

Основные компоненты ЭВМ. Идеи и основы сети Интернет

16

Содержание

  • Введение
  • 1. Принципы построения ЭВМ
  • 2. Устройства ввода-вывода
  • 3. История развития Internet. Структура и принципы работы Интернет
  • 4. Поиск информации в Интернет
  • 5. Виды моделей
  • 6. Краткая история и классификация языков программирования
  • 7. Операционные системы
  • 8. Типы СУБД
  • 9. Технические, организационные и программные средства обеспечения сохранности и защиты от несанкционированного доступа
  • 10. Средства защиты от вирусов
  • Заключение
  • Список литературы
Введение

Цель преподавания дисциплины "Информатика" состоит в изучении основных положений и разделов информатики; получении навыков практического использования компьютера; получении отчетливого представления о роли информатики и информационных технологий в современном мире.

Задачами изучения дисциплины являются:

развитие логического и алгоритмического мышления.

овладение основами функционирования персональных компьютеров, методами и средствами хранения и передачи информации, обработкой результатов измерений на ЭВМ, компьютерной графикой

выработка умения самостоятельного решения задач обработки текстовой и цифровой информации, навыков практической работы на персональном компьютере.

Дисциплина "Информатика" связана со следующими дисциплинами:

Математика (разделы "Линейная алгебра"; "Численные методы")

Физика (Раздел "Электричество и магнетизм").

В соответствии с Государственным образовательным стандартом курс "Информатика" должен включать в себя следующие темы обязательного минимума:

Понятие информации, общая характеристика процессов сбора, передачи, обработки и накопления информации; технические и программные средства реализации информационных процессов; модели решения функциональных и вычислительных задач; алгоритмизация и программирование; языки программирования высокого уровня; базы данных; программное обеспечение и технологии программирования; локальные и глобальные сети ЭВМ; основы защиты информации и сведений, составляющих государственную тайну; методы защиты информации.

1. Принципы построения ЭВМ

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).

2. Информация, с которой работает ЭВМ делится на два типа:

набор команд по обработке (программы);

данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) - принцип хранимой программы.

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления, по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др.).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины. Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота - в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n - разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты.

Программное управление работой периферийного устройства производится через программу - драйвер, которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты - специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM - порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

2. Устройства ввода-вывода

Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Только благодаря периферийным устройствам человек может взаимодействовать с компьютером, а также со всеми подключенными к нему устройствами. Любое подключенное периферийное устройство в каждый момент времени может быть или занято выполнением порученной ему работы или пребывать в ожидании нового задания. Влияние скорости работы периферийных устройств на эффективность работы с компьютером не меньше, чем скорость работы его центрального процессора. Скорость работы внешних устройств от быстродействия процессора не зависит. Наиболее распространенные периферийные устройства приведены на рисунке:

Периферийные устройства делятся на устройства ввода и устройства вывода. Устройства ввода преобразуют информацию в форму понятную машине, после чего компьютер может ее обрабатывать и запоминать. Устройства вывода переводят информацию из машинного представления в образы, понятные человеку.

Ниже приведена классификация устройств ввода:

Самым известным устройством ввода информации является клавиатура (keyboard) - это стандартное устройство, предназначенное для ручного ввода информации. Работой клавиатуры управляет контроллер клавиатуры, расположенный на материнской плате и подключаемый к ней через разъем на задней панели компьютера. При нажатии пользователем клавиши на клавиатуре, контроллер клавиатуры преобразует код нажатой клавиши в соответствующую последовательность битов и передает их компьютеру. Отображение символов, набранных на клавиатуре, на экране компьютера называется эхом. Обычная современная клавиатура имеет, как правило, 101-104 клавиши, среди которых выделяют алфавитно-цифровые клавиши, необходимые для ввода текста, клавиши управления курсором и ряд специальных и управляющих клавиш. Существуют беспроводные модели клавиатуры, в них связь клавиатуры с компьютером осуществляется посредством инфракрасных лучей.

Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость хода клавиш и расстояние между клавишами. На долговечность клавиатуры определяется количеством нажатий, которые она рассчитана выдержать. Клавиатура проектируется таким образом, чтобы каждая клавиша выдерживала 30-50 миллионов нажатий.

К манипуляторам относят устройства, преобразующие движения руки пользователя в управляющую информацию для компьютера. Среди манипуляторов выделяют мыши, трекболы, джойстики.

Мышь предназначена для выбора и перемещения графических объектов экрана монитора компьютера. Для этого используется указатель, перемещением которого по экрану управляет мышь. Мышь позволяет существенно сократить работу человека с клавиатурой при управлении курсором и вводе команд. Особенно эффективно мышь используется при работе графическими редакторами, издательскими системами, играми. Современные операционные системы также активно используют мышь для управляющих команд.

У мыши могут быть одна, две или три клавиши. Между двумя крайними клавишами современных мышей часто располагают скролл. Это дополнительное устройство в виде колесика, которое позволяет осуществлять прокрутку документов вверх-вниз и другие дополнительные функции.

Мышь состоит из пластикового корпуса, сверху находятся кнопки, соединенные с микропереключателями. Внутри корпуса находится обрезиненный металлический шарик, нижняя часть которого соприкасается с поверхностью стола или специального коврика для мыши, который увеличивает сцепление шарика с поверхностью. При движении манипулятора шарик вращается и переедает движение на соединенные с ним датчики продольного и поперечного перемещения. Датчики преобразуют движения шарика в соответствующие импульсы, которые передаются по проводам мыши в системный блок на управляющий контроллер. Контроллер передает обработанные сигналы операционной системе, которая перемещает графический указатель по экрану. В беспроводной мыши данные передаются с помощью инфракрасных лучей. Существуют оптические мыши, в них функции датчика движения выполняют приемники лазерных лучей, отраженных от поверхности стола.

Трекбол по функциям близок мыши, но шарик в нем больших размеров, и перемещение указателя осуществляется вращением этого шарика руками. Трекбол удобен тем, что его не требуется перемещать по поверхности стола, которого может не быть в наличии. Поэтому, по сравнению с мышью, он занимает на столе меньше места. Большинство переносных компьютеров оснащаются встроенным трекболом.

Джойстик представляет собой основание с подвижной рукояткой, которая может наклоняться в продольном и поперечном направлениях. Рукоятка и основание снабжаются кнопками. Внутри джойстика расположены датчики, преобразующие угол и направление наклона рукоятки в соответствующие сигналы, передаваемые операционной системе. В соответствии с этими сигналами осуществляется перемещение и управление графических объектов на экране.

Дигитайзер - это устройство для ввода графических данных, таких как чертежи, схемы, планы и т.п. Он состоит из планшета, соединенного с ним визира или специального карандаша. Перемещая карандаш по планшету, пользователь рисует изображение, которое выводится на экран.

Сканер - устройство ввода графических изображений в компьютер. В сканер закладывается лист бумаги с изображением. Устройство считывает его и пересылает компьютеру в цифровом виде. Во время сканирования вдоль листа с изображением плавно перемещается мощная лампа и линейка с множеством расположенных на ней в ряд светочувствительных элементов. Обычно в качестве светочувствительных элементов используют фотодиоды. Каждый светочувствительный элемент вырабатывает сигнал, пропорциональный яркости отраженного света от участка бумаги, расположенного напротив него. Яркость отраженного луча меняется из-за того, что светлые места сканируемого изображения отражают гораздо лучше, чем темные, покрытые краской. В цветных сканерах расположено три группы светочувствительных элементов, обрабатывающих соответственно красные, зеленые и синие цвета. Таким образом, каждая точка изображения кодируется как сочетание сигналов, вырабатываемых светочувствительными элементами красной, зеленой и синей групп. Закодированный таким образом сигнал передается на контроллер сканера в системный блок.

Различают сканеры ручные, протягивающие и планшетные. В ручных сканерах пользователь сам ведет сканер по поверхности изображения или текста. Протягивающие сканеры предназначены для сканирования изображений на листах только определенного формата. Протягивающее устройство таких сканеров последовательно перемещает все участки сканируемого листа над неподвижной светочувствительной матрицей. Наибольшее распространение получили планшетные сканеры, которые позволяют сканировать листы бумаги, книги и другие объекты, содержащие изображения. Такие сканеры состоят из пластикового корпуса, закрываемого крышкой. Верхняя поверхность корпуса выполняется из оптически прозрачного материала, на который кладется сканируемое изображение. После этого изображение закрывается крышкой и производится сканирование. В процессе сканирования под стеклом перемещается лампа со светочувствительной матрицей.

Главные характеристики сканеров - это скорость считывания, которая выражается количеством сканируемых станиц в минуту (pages per minute - ppm), и разрешающая способность, выражаемая числом точек получаемого изображения на дюйм оригинала (dots per inch - dpi).

После ввода пользователем исходных данных компьютер должен их обработать в соответствии с заданной программой и вывести результаты в форме, удобной для восприятия пользователем или для использования другими автоматическими устройствам посредством устройств вывода.

Выводимая информация может отображаться в графическом виде, для этого используются мониторы, принтеры или плоттеры. Информация может также воспроизводиться в виде звуков с помощью акустических колонок или головных телефонов, регистрироваться в виде тактильных ощущений в технологии виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.

Монитор (дисплей) является основным устройством вывода графической информации. По размеру диагонали экрана выделяют мониторы 14-дюймовые, 15-дюймовые, 17-дюймовые, 19-дюймовые, 21-дюймовые. Чем больше диагональ монитора, тем он дороже. По цветности мониторы бывают монохромные и цветные. Любое изображение на экране монитора образуется из светящихся разными цветами точек, называемых пикселями (это название происходит от PICture CELL - элемент картинки). Пиксель - это самый мелкий элемент, который может быть отображен на экране. Чем качественнее монитор, тем меньше размер пикселей, тем четче и контрастнее изображение, тем легче прочесть самый мелкий текст, а значит, и меньше напряжение глаз. По принципу действия мониторы подразделяются на мониторы с электронно-лучевой трубкой (Catode Ray Tube - CRT) и жидкокристаллические - (Liquid Crystal Display - LCD).

В мониторах с электронно-лучевой трубкой изображение формируется с помощью зерен люминофора - вещества, которое светится под воздействием электронного луча. Различают три типа люминофоров в соответствии с цветами их свечения: красный, зеленый и синий. Цвет каждой точки экрана определяется смешением свечения трех разноцветных точек (триады), отвечающих за данный пиксель. Яркость соответствующего цвета меняется в зависимости от мощности электронного пучка, попавшего в соответствующую точку. Электронный пучок формируется с помощью электронной пушки. Электронная пушка состоит из нагреваемого при прохождении электрического тока проводника с высоким удельным электрическим сопротивлением, эмитирующего электроны покрытия, фокусирующей и отклоняющей системы.

При прохождении электрического тока через нагревательный элемент электронной пушки, эмитирующее покрытие, нагреваясь, начинает испускать электроны. Под действием ускоряющего напряжения электроны разгоняются и достигают поверхности экрана, покрытой люминофором, который начинает светиться. Управление пучком электронов осуществляется отклоняющей и фокусирующей системой, которые состоят из набора катушек и пластин, воздействующих на электронный пучек с помощью магнитного и электрического полей. В соответствии с сигналами развертки, подаваемыми на электронную пушку, электронный луч побегает по каждой строчке экрана, последовательно высвечивая соответствующие точки люминофора. Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается. Частоту смены изображений определяет частота горизонтальной синхронизации. Это один из наиболее важных параметров монитора, определяющих степень его вредного воздействия на глаза. В настоящее время гигиенически допустимый минимум частоты горизонтальной синхронизации составляет 80 Гц, у профессиональных мониторов она составляет 150 Гц.

Современные мониторы с электронно-лучевой трубкой имеют специальное антибликовое покрытие, уменьшающее отраженный свет окон и осветительных приборов. Кроме того, монитор покрывают антистатическим покрытием и пленкой, защищающей от электромагнитного излучения. Дополнительно на монитор можно установить защитный экран, который необходимо подсоединить к заземляющему проводу, что также защитит от электромагнитного излучения и бликов. Уровни излучения мониторов нормируются в соответствии со стандартами LR, MPR и MPR-II.

Жидкокристаллические мониторы имеют меньшие размеры, потребляют меньше электроэнергии, обеспечивают более четкое статическое изображение. В них отсутствуют типичные для мониторов с электронно-лучевой трубкой искажения. Принцип отображения на жидкокристаллических мониторах основан на поляризации света. Источником излучения здесь служат лампы подсветки, расположенные по краям жидкокристаллической матрицы. Свет от источника света однородным потоком проходит через слой жидких кристаллов. В зависимости от того, в каком состоянии находится кристалл, проходящий луч света либо поляризуется, либо не поляризуется. Далее свет проходит через специальное покрытие, которое пропускает свет только определенной поляризации. Там же происходит окраска лучей в нужную цветовую палитру. Жидкокристаллические мониторы практически не производят вредного для человека излучения.

Для получения копий изображения на бумаге применяют принтеры, которые классифицируются:

по способу получения изображения: литерные, матричные, струйные, лазерные и термические;

по способу формирования изображения: последовательные, строчные, страничные;

по способу печати: ударные, безударные;

по цветности: чёрно-белые, цветные.

Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтерысхожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте. Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги.

Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки.

Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество - тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге.

Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати.

К основным характеристикам принтеров можно относятся:

ширина каретки, которая обычно соответствую бумажному формату А3 или А4;

скорость печати, измеряемая количеством листов, печатаемы в минуту

качество печати, определяемое разрешающей способностью принтера - количеством точек на дюйм линейного изображения. Чем разрешение выше, тем лучше качество печати.

расход материалов: лазерным принтером - порошка, струйным принтером - чернил, матричным принтером - красящих лент.

Плоттер (графопостроитель) - это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину.

3. История развития Internet. Структура и принципы работы Интернет

В 1961 году Defence Advanced Research Agensy (DARPA - оборонное агентство передовых исследовательских проектов) по заданию министерства обороны США приступило к проекту по созданию экспериментальной сети передачи пакетов. Эта сеть, названная ARPANET, предназначалась первоначально для изучения того, как поддерживать связь в случае ядерного нападения и для помощи исследователям в обмене информацией между разбросанными по всем штатам исследовательскими организациями оборонной промышленности.

В основу проекта были положены три основные идеи:

каждый узел сети соединен с другими, так что существует несколько различных путей от узла к узлу;

все узлы и связи рассматриваются как ненадежные;

существуют автоматически обновляемые таблицы перенаправления пакетов - пакет, предназначенный для несоседнего узла отправляется на ближайший к нему, согласно таблице перенаправления пакетов, при недоступности этого узла - на следующий и т.д.

Созданная по таким принципам система не имела централизованного узла управления, и следовательно безболезненно могла изменять свою конфигурацию.

Эксперимент с ARPANET был настолько успешен, что многие организации захотели войти в нее с целью использования для ежедневной передачи данных. И в 1975 году ARPANET превратилась из экспериментальной сети в рабочую сеть.

В конце 80-х годов Россия подключилась к сети APRANET. В 1990 году сеть APRANET перестала существовать, и на ее месте возник Интернет. Интернет сделала возможным свободный обмен информацией, невзирая на расстояния государственные границы.

Фактически, Интернет состоит из множества локальных и глобальных сетей, принадлежащих различным компаниям и предприятиям, работающих по самым разнообразным протоколам, связанных между собой различными линиями связи, физически передающих данные по телефонным проводам, оптоволокну, через спутники и радиомодемы.

За Интернет никто централизовано не платит, каждый платит за свою часть. Представители сетей собираются вместе и решают, как им соединяться друг с другом и содержать эти взаимосвязи. Пользователь платит за подключение к некоторой региональной сети, которая в свою очередь платит за свой доступ сетевому владельцу государственного масштаба. Интернет не имеет никакого собственника, здесь нет и специального органа управления, который бы контролировал всю работу сети Интернет. Локальные сети различных стран финансируются и управляются местными органами согласно политике данной страны.

Структура Интернет напоминает паутину, в узлах которой находятся компьютеры, связанные между собой линиями связи. Узлы Интернет, связанные высокоскоростными линиями связи, составляют базис Интернет. Как правило, это поставщики услуг (провайдеры). Оцифрованные данные пересылаются через маршрутизаторы, которые соединяют сети с помощью сложных алгоритмов, выбирая маршруты для информационных потоков.

Каждый компьютер в Интернет имеет свой уникальный адрес. В протоколе TCP/IP каждый компьютер адресуется четырьмя отделяемыми друг от друга точками десятичными числами, каждое из которых может иметь значение от 1 до 255. Адрес компьютера выглядит следующим образом:

19.226.192.108

Такой адрес называется IP-адресом. Этот номер может быть постоянно закреплен за компьютером или же присваиваться динамически - в тот момент, когда пользователь соединился с провайдером, но в любой момент времени в Интернет не существует двух компьютеров с одинаковыми IP-адресами.

Пользователю неудобно запоминать такие адреса, которые к тому же могут изменяться. Поэтому в Интернет существует Доменная Служба Имен (DNS - Domain Name System), которая позволяет каждый компьютер назвать по имени. В сети существуют миллионы компьютеров, и чтобы имена не повторялись, они разделены по независимым доменам.

Таким образом адрес компьютера выглядит как несколько доменов, разделенных точкой:

<сегмент n>. … <сегмент 3>. <сегмент 2>. <сегмент 1>.

Здесь сегмент 1 - домен 1 уровня, сегмент 2 - домен 2 уровня и т.д.

Доменное имя - это уникальное имя, которое данный поставщик услуг избрал себе для идентификации, например: ic. vrn.ru или yahoo.com

Например, доменный адрес (доменное имя) www.microsoft.com обозначает компьютер с именем www в домене microsoft.com. Microsoft - это название фирмы, com - это домен коммерческих организаций. Имя компьютера www говорит о том, что на этом компьютере находится WWW-сервис. Это стандартный вид адреса серверов крупных фирм (например, www.intel.com, www.amd.com и т.д.). Имена компьютеров в разных доменах могут повторяться. Кроме того, один компьютер в сети может иметь несколько DNS-имен.

Домен 1 уровня обычно определяет страну местоположения сервера (ru - Россия; ua - Украина; uk - Великобритания; de - Германия) или вид организации (com - коммерческие организации; edu - научные и учебные организации; gov - правительственные учреждения; org - некоммерческие организации).

Когда вводится доменное имя, например, www.mrsu.ru, компьютер должен преобразовать его в адрес. Чтобы это сделать, компьютер посылает запрос серверу DNS, начиная с правой части доменного имени и двигаясь влево. Его программное обеспечение знает, как связаться с корневым сервером, на котором хранятся адреса серверов имён домена первого уровня (крайней правой части имени, например, ru). Таким образом, сервер запрашивает у корневого сервера адрес компьютера, отвечающего за домен ru. Получив информацию, он связывается с этим компьютером и запрашивает у него адрес сервера mrsu. После этого от сервера mrsu он получает адрес www компьютера, который и был целью данной прикладной программы.

Данные в Интернет пересылаются не целыми файлами, а небольшими блоками, которые называютсяпакетами. Каждый пакет содержит в себе адреса компьютеров отправителя и получателя, передаваемые данные и порядковый номер пакета в общем потоке данных. Благодаря тому, что каждый пакет содержит все необходимые данные, он может доставляться независимо от других, и довольно часто случается так, что пакеты добираются до места назначения разными путями. А компьютер-получатель затем выбирает из пакетов данные и собирает из них тот файл, который был заказан.

Для идентификации служб используются порты. Порт - это число, которое добавляется к адресу компьютера, которое указывает на программу, для которой данные предназначены. Каждой программе, запущенной на компьютере, соответствует определенный порт, и она реагирует только на те пакеты, которые этому порту адресованы. Существует большое количество стандартных портов, соответствующих определенным службам, например, 21 - FTP; 23 - telnet; 25 - SMTP; 80 - HTTP; 110 - POP3; 70 - Gopher и т.д.

В Интернет используются не просто доменные имена, а универсальные указатели ресурсов URL (Universal Resource Locator).

URL включает в себя:

метод доступа к ресурсу, т.е. протокол доступа (http, gopher, WAIS, ftp, file, telnet и др.);

сетевой адрес ресурса (имя хост-машины и домена);

полный путь к файлу на сервере.

В общем виде формат URL выглядит так:

method: // host. domain [: port] /path/filename,

где method - одно из значений, перечисленных ниже:

file - файл на локальной системе;

http - файл на World Wide Web сервере;

gopher - файл на Gopher сервере;

wais - файл на WAIS (Wide Area Information Server) сервере;

news - группа новостей телеконференции Usenet;

telnet - выход на ресурсы сети Telnet;

ftp - файл на FTP - сервере.

host. domain - доменное имя в сети Интернет.

port - число, которое необходимо указывать, если метод требует номер порта.

Пример: http://support. vrn.ru/archive/index.html.

Префикс http://указывает, что далее следует адрес Web-страницы, /archive описывает каталог с именем archiv на сервере support. vrn.ru, а index.html - имя файла.

Ниже приведены некоторые наиболее часто встречающиеся названия компьютеров сети Интернет.

Сервер в сети Интернет - это компьютер, обеспечивающий обслуживание пользователей сети: разделяемый доступ к дискам, файлам, принтеру, системе электронной почты. Обычно сервер - это совокупность аппаратного и программного обеспечения.

Сайт - обобщенное название совокупности документов в Интернет, связанных между собой ссылками.

Шлюз (gateway) - это компьютер или система компьютеров со специальным программным обеспечением, позволяющая связываться двум сетям с разными протоколами.

Домашняя страница - это персональная Web-страница конкретного пользователя или организации.

4. Поиск информации в Интернет

Поисковая система - это комплекс программ и мощных компьютеров, автоматически просматривающих ресурсы Интернет, которые они могут найти, и индексирующих их содержание. Поисковые системы могут отличаться по эффективности поиска, по языку поиска (русский, английский и др.) и по некоторым другим возможностям. Например, одни поисковые системы находят информацию только в виде Web-страниц, другие могут просматривать и группы новостей, и файловые серверы. Результатом поиска являются гиперссылки на документы, содержащие требуемую информацию.

Наиболее известны следующие системы для поиска информации в международных информационных ресурсах:

Alta Vista (http://www.altavista.com/);

Google (http://www.google.com/);

Yahoo (http://www.yahoo.com/);

Infoseek (http://www.infoseek.com/);

Hot Bot (http://www.hotbot.com/) /.

Для поиска информации в российских информационных ресурсах:

Яндекс (http://www.yandex.ru/).

Рамблер (http://www.rambler.ru/);

Апорт (http://www.aport.ru/).

Для поиска информации в Интернет с использованием поисковой системы необходимо перейти на ее WEB - страницу, набрав электронный адрес или воспользоваться гипертекстовой ссылкой на эту систему.

Поисковые системы могут быть 2-х типов: универсальные и специализированные. Наиболее популярные современные поисковые системы сочетают в себе оба типа.

В универсальных системах используется обычный принцип поиска в неструктурированных документах - по ключевым словам. Ключевым словом (Keyword) документа называется отдельное слово или словосочетание, которое отражает содержание данного документа.

На начальной странице поисковой системы обычно расположено обширное меню тем и поле для ввода запроса, иногда можно задать язык для поиска. Для поиска документов по ключевому слову надо ввести это слово в поле для ввода запроса и нажать кнопку “Search" (или “Поиск” в русских системах), расположенную рядом с полем ввода. Для поиска можно использовать словосочетание; для этого надо словосочетание заключить в двойные кавычки. В некоторых системах можно осуществлять поиск по части слова, оставшаяся часть слова заменяется знаком “*”, как в шаблоне имени файла. Знаки “+” и “-” перед словом требуют обязательного присутствия или отсутствия этого слова в документе.

Существует также кнопка перехода к расширенному поиску (Advanced Search). Главное отличие расширенного поиска - использование в запросе логических операторов и круглых скобок. Для построения сложного запроса используются логические операторы AND (И), OR (ИЛИ), NOT (НЕТ) и NEAR (около; не далее чем в 10 символах). Логические операторы ставятся между словами или словосочетаниями. Здесь могут использоваться даты документов размер документов и другие критерии. Интерфейсы расширенного поиска у разных поисковых систем существенно отличаются; для наиболее эффективного использования нужно внимательно почитать раздел Advanced Search Help поисковой системы.

Поисковые системы обычно состоят из трех компонентов:

поисковый робот (агент, паук или кроулер), который перемещается по сети и собирает информацию;

база данных, которая содержит всю информацию, собираемую роботом;

поисковый механизм, который используется как интерфейс для взаимодействия с базой данных.

Поисковые роботы - это специальные программы, которые занимаются поиском страниц в сети, извлекают гипертекстовые ссылки на этих страницах и автоматически индексируют информацию, которую они находят для построения базы данных.

При запросе к поисковой системе база данных отыскивает предмет запроса, основанный на информации, указанной в заполненной форме поиска, и выводит список ссылок на документы, соответствующих запросу. В этом списке представлены ссылки на различные Web-страницы, причем ссылки располагаются по степени убывания встреченных на данных страницах слов, совпадающих с ключевыми словами. При просмотре списка необходимо выбрать те страницы, которые нужно просмотреть. Некоторые системы составляют список ссылок по степени свежести страниц, другие же - по степени вероятности того, что данные страницы окажутся искомыми.

Специализированные справочные службы - это тематические каталоги, в которых собраны структурированные сведения об адресах серверов по той или иной тематике. Ссылки в такие каталоги заносятся не автоматически, а с помощью администраторов. Они стараются сделать свои коллекции наиболее полными, включающими все доступные ресурсы на каждую тему. В результате пользователю не нужно самому собирать все ссылки по интересующему его вопросу, а достаточно найти этот вопрос в каталоге - работа по поиску и систематизации ссылок уже сделана за него. Как правило, хорошие каталоги Интернет обеспечивают разнообразный дополнительный сервис: поиск по ключевым словам в своей базе данных, списки последних поступлений, списки наиболее интересных из них, выдачу случайной ссылки, автоматическое оповещение по электронной почте о свежих поступлениях.

Поисковые каталоги предназначены для поиска по темам. Обычно они построены по иерархическому принципу, т.е. каждый шаг поиска это выбор подраздела с более конкретной тематикой искомой информации. На нижнем уровне поиска пользователь получает относительно небольшой список ссылок на искомую информацию.

Для того чтобы обойти всю сеть, мощному роботу нужно от нескольких дней до нескольких недель. При этом составляется свежий и подробный индекс - опись доступных ресурсов. При каждом новом цикле индекс обновляется, и старые недействительные адреса удаляются. Однако автоматизированный подход приводит к тому, что индекс оказывается засоренным большим количеством профессионально слабых, неинформативных адресов, которые пользователь нередко и получает в результате поиска.

Каталоги составляются администраторами, просматривающими каждый новый сайт прежде, чем включить его в индекс. Качество информации каталогов выше, и нетематическая информация попасть в каталог просто не может; но коллектив редакторов может не поспевать за темпами расширения Интернета. Кроме того, чем дальше, тем больше в каталоге накапливается заброшенных или устаревших адресов - его не успевают чистить. В отличие от роботов, каталоги индексируют документ не по наиболее часто встречающимся словам, а по тем ключевым словам, которые вводятся администраторами.

Если пользователя интересует хорошо разработанная и часто востребуемая тема, популярный материал, то проще воспользоваться специализированным каталогом, обычно расположенным на первой странице каждой поисковой системы. Метод работы здесь как в обычной библиотеке: двигаясь от общего к частному, достигается список нужных сайтов. Для более специального поиска, как правило, необходимо использовать ключевые слова.

Помимо услуг по нахождению сайтов, поисковые системы предоставляют широкий перечень разнообразной сопутствующей информации, например: новости, гороскопы, почтовые ящики, электронная коммерция, котировки акций, погода, спорт, географические карты, программы телевидения, лотереи и т.д.

5. Виды моделей

В зависимости от поставленной задачи, способа создания модели и предметной области различают множество типов моделей:

1. По области использования выделяют учебные, опытные, игровые, имитационные, научно-исследовательские модели.

2. По временному фактору выделяют статические и динамические модели.

3. По форме представления модели бывают математические, геометрические, словесные, логические, специальные (ноты, химические формулы и т.п.).

4. По способу представления модели делят на информационные (нематериальные, абстрактные) и материальные. Информационные модели, в свою очередь, делят на знаковые и вербальные, знаковые - на компьютерные и некомпьютерные.

Информационная модель - это совокупность информации, характеризующая свойства и состояние объекта, процесса или явления.

Вербальная модель - информационная модель в мысленной или разговорной форме.

Знаковая модель - информационная модель, выраженная специальными знаками, то есть средствами любого формального языка.

Математическая модель - система математических соотношений, описывающих процесс или явление.

Компьютерная модель - математическая модель, выраженная средствами программной среды.

6. Краткая история и классификация языков программирования

Первые языки программирования были очень примитивными и мало чем отличались от формализованных упорядоченных последовательностей единиц и нулей, понятных компьютеру. Использование таких языков было крайне неудобно с точки зрения программиста, так как он должен был знать числовые коды всех машинных команд, должен был сам распределять память под команды программы и данные.

Страницы: 1, 2


© 2010 BANKS OF РЕФЕРАТ