Рефераты
 

Расчет задач вычислительных систем

Расчет задач вычислительных систем

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “Обчислювальна техніка та програмування”

РГЗ

з курсу “Комп'ютерні системи

Варіант № xxxx

Виконав:

Студент групи xxxx

xxxxxx.

Перевірив:

xxxxxxxxx.

Харків 2007

Задача №1

Составить алгоритм и программу вычисления функции на параллельной структуре, используя разложение функции в ряд Маклорена.

,

де - условие окончания расчетов.

Решение

Однопроцессорный алгоритм решения заданной задачи:

Многопроцессорный алгоритм решения задачи:

Программа на параллельном Паскале:

Program par_pascal;

Var

R, S, x, f, L, e : real;

K : longinteger;

BEGIN

FORK;

begin

read(e);

R := 0;

K = 1;

end;

begin

read(x) ;

S := x;

F := x*x;

end;

JOIN;

repeat

FORK;

begin

R := R + S;

L = S*(-1);

end;

begin

K = K + 2;

Z=1/(K*(K-1))

end;

JOIN;

S := L*z;

until (ABS(S) > e);

writeln(R);

END.

Задача №2

Спроектировать два универсальных программируемых конвейера с числом звеньев m1 и m2 для вычисления массивы С длинной n элементов. Определить и сравнить эффективности конвейеров и выполнить анализ полученных результатов. Определить размер буферной памяти между звеньями.

Длительность операций:

Чтение, запись

4

+, -

3

*, /

5

,

6

инкремент, декремент

1

m1 = 5, m2 = 6.

Решение

1. Составим таблицу операций:

№ п/п

Операция

Количество тактов

1

чтение

4

2

чтение

4

3

вычисление

5

4

вычисление

5

5

вычисление

3

6

вычисление

3

7

вычисление

5

8

вычисление

5

8

вычисление

3

9

вычисление

3

10

вычисление

6

11

вычисление

5

12

вычисление

5

13

запись

4

14

n = n -1

1

15

if n >…, goto п. 1

1

2. Тпосл = 6т + 65т +34т + 43т + 21т = 62т

3. при m = 4 Тзв.треб.1 62т / 5 = 12,4 = 13;

при m = 6 Тзв.треб.2 62т / 6 = 10,33 = 11;

4. Распределение операций между звеньями конвейера при m = 5:

Входные данные поступают на первое ( и ) звено, обратной линией отмечено управление конвейером (когда на первом звене выполняется условие n>0, то на пятом звене оно соответствует условию n-4>0; это условие проверяется на пятом, и сигнал о чтении следующего значения или прекращение чтения поступает на первое звено).

Распределение операций между звеньями конвейера при m = 6:

5. Графики загрузки процессоров

6. Для m = 5 Тдейств = 13.

Для m = 6 Тдейств = 11.

7.

Для m = 5

при .

Для m = 6

при ,

- эффективность конвейера на 6-ть шагов выше.

8. Размер буферной памяти между звеньями:

при m = 5 - 5 элементов;

при m = 6 - 5 элементов.

9. Критическая длина массива

m=5 m=6

=1 =1

Вывод: Наиболее эффективна конвейерная обработка при наибольшем числе звеньев конвейера. Критическая минимальная эффективная длина массива для обработки конвейером - 2.

Задача №3

Реализовать заданные функции на вычислительных системах с программируемой структурой.

а)

б)

Решение

a)

Схема элементарного процессора:

б) =

Схема элементарного процессора:

Задача №4

Вероятностные модели. По матрице вероятностных переходов составить граф марковской цепи и систему линейных алгебраических уравнений. Определить среднюю продолжительность пребывания вычислительной системы в каждом состоянии.

Составили граф-схему модели:

Система уравнений:

Решили систему уравнений:

Определили середнюю продолжительность каждого состояния:

t0=; t1=; t2=; t3= .

Задача №5

По заданной структуре вычислительной системы сформулировать и при необходимости дополнить исходные данные. Составить таблицу состояний, граф переходов и систему уравнений (систему не решать). Преобразовать полученный граф переходов и систему уравнений в задачу Шерра II рода.

Каждый модуль может находиться в одном из состояний: рабочее - “1”, нерабочее - “0”.

Состояния системы:

S0 -- все ЭВМ рабочие;

S1 -- одна из ЭВМ 2, ЭВМ 3 не работает, а ЭВМ 1 работает;

S2 -- ЭВМ 2, ЭВМ 3 не работают, ЭВМ 1 работает;

S3 -- ЭВМ 2, ЭВМ 3 работают, ЭВМ 1 не работает;

S4 -- одна из ЭВМ 2, ЭВМ 3 не работает, а ЭВМ 1 не работает;

S5 -- все ЭВМ не работают.

Таблица состояний:

Si

ЭВМ2, ЭВМ3

ЭВМ1

Состояние системы

S0

11

1

1

S1

01v10

1

1

S2

00

1

1

S3

11

0

1

S4

10v01

0

0

S5

00

0

0

Система уравнений:

Граф переходов имеет вид:

Исключим выходящие стрелки из отказных состояний и получим граф переходов для задачи Шерра II рода:

Система уравнений:

Задали и . Решили данные системы уравнений в математическом пакете MathCad:

Полученные вектор-матрицы - решения сформулированных систем уравнений, задающих вероятности состояний вычислительной системы.


© 2010 BANKS OF РЕФЕРАТ