Рефераты
 

Реорганизация схемы управления и оптимизация сегмента сети передачи данных

. Централизованное оповещение о состоянии активного оборудования через протокол SNMP, что повысит возможность предупреждения и поиска неполадок в сети, наблюдение за загруженностью каналов связи.

4. Централизовать динамическую выдачу настроек сети пользователям, путём переноса dhcp-сервера с border'а на сервер находящийся в датацентре компании.

2 Проектная часть

2.1 Концепция развития домовой локальной вычислительной сети

С развитием информационных технологий люди передают по сетям передачи данных не только данные, но и голос, и изображение. Совокупность предоставления такого рода услуг, носит маркетинговый термин Triple-play, предполагающий наличие широкополосного доступа в сеть Интернет. Требования к такой услуге предъявляются высокие. Данные необходимо получать целиком. Голос необходимо слышать четко, не должно быть проблем с установкой связи, слышимостью. Видео должно быть качественным, не должно быть рассыпания картинки, зависаний изображений, звук и видео должны быть синхронизованы. Для того чтобы описанные критерии соблюдались, необходимо иметь надежную и качественную опорную сеть, где будет оптимально сбалансирована загрузка процессорной мощности коммутационного оборудования, пропускная способность каналов связи, паразитный трафик и шумы должны быть минимизированы чтоб не вызывать временных задержек.

Для реорганизации сети предлагаются следующие основные действия:

1. Вынести интерфейсы управления коммутаторов(management-интефейсов) в отдельный VLAN с выделением сети /21 для коммутаторов. Management-VLAN предлагается затерминировать на border. Выполнение этого пункта позволит исключить негативное влияние клиентского трафика на коммутаторы и позволит сократить размер ACL на ТКД за счёт выноса из него правил запрещающих пользователям подставлять ip-адреса из подсети management-интерфейсов коммутаторов. Вынос management'а будет осуществлён, не затрагивая предоставление сервисов клиентам

2. Перенести терминацию пользовательской подсети c border на У-2. На каждый У-2 выделить сеть /21, то есть 2045 адресов для клиентов. Выполнение данного пункта позволит сократить существующий огромный броадкаст домен в десятки раз, что во столько же раз снизит нагрузку на коммутаторы.

3. Поднять ospf-маршрутизацию между У-2 и border'ом, для направления трафика внутри района напрямую с У-2 на У-2 в обход border'а.

4.Вывести многоадресный трафик в отдельный VLAN из пользовательской подсети, это обеспечит беспрепятственный транспорт для введения нового бизнес процесса IP телевидения.

5. Централизовать динамическую выдачу настроек сети пользователям, путём переноса dhcp-сервера с граничного маршрутизатора на сервер находящийся в датацентре компании. Перенос будет осуществлён путём включения функции dhcp-relay на ТКД без прерывания сервиса клиентов. Выполнение данного пункта позволит нам выполнить последующие пункты данного проекта и получать дополнительную информацию о клиенте в полях dhcp option 82, которая может пригодиться для дальнейших разработок.

6. Поднять дистрибуцию статических маршрутов для сетей «локальных ресурсов» с У-2 в сторону клиентов, посредством протокола динамической маршрутизации OSPF. Данный протокол выбран из-за поддержки его операционными системами семейства Microsoft Windows. Данный пункт сделает более простой и удобной настройку клиентам. А главное добавит динамичность маршрутам прописываемых сейчас клиентами статикой

7. Перевести линки между ТКД и У-2 в полноценные транки. Данный пункт при необходимости, позволит легко внедрять QoS на домовой сети.

2.2 Аппаратное обеспечение модернизированной домовой локальной вычислительной сети

Модернизированная домовая сеть, построенная по логической схеме, представлена на рисунке 2.1.

Рисунок 2.1

Рассмотрим архитектуру широкополосной сети доступа. Ключевым моментом дизайна сети является трехуровневая модель построения сети.  В сети можно выделить оборудование Уровня Доступа (Access Layer) - это свитчи, к которым подключены клиенты, Уровня Распределения (Aggregation Layer) - узловые свитчи (1ый, 2ой уровни и агрегаторы), Уровня Ядра сети (Backbone Layer).

Таким образом, общая схема сети делится на три уровня:

· Уровень доступа - осуществляет физическую концентрацию абонентских линий. Единицу оборудования данного уровня будем называть ТКД (Точка Коллективного Доступа). ТКД организует разделение абонентов на уровне Ethernet с использованием виртуальных сетей, обеспечивает ограничение скорости передачи данных на входе в сеть и осуществляет базовые функции безопасности.

· Уровень распределения - терминирует виртуальные сети Уровня Доступа с использованием протокола IP.

· Уровень ядра - служит высокоскоростной и надежной магистралью объединяющей все в единое целое.

Серверы широкополосного доступа (BRAS) - в качестве серверов широкополосного доступа устанавливаются маршрутизаторы Cisco 7301, на которых терминируются туннельные PPTP/L2TP сессии клиентов, обращающихся в Интернет. Трафик от клиентов в Интернет проходит сквозь серверы широкополосного доступа.

Для реорганизации сети потребуется 1 сервер для переноса dhcp-сервера с граничного маршрутизатора, коммутационное оборудование менять нет необходимости, так как коммутационной мощности и набора функций коммутаторов DES-3526, DXS-3326GSR хватит для основных пунктов модернизации.

Сервер HP ProLiant DL320 (G3)

Третье поколение серверов ProLiant DL320 (рисунок 2.2) разработано для работы со специализированными предложениями, используемые на малых и средних предприятиях. Кроме того, благодаря новейшим микросхемам Intel появилось множество новых технических возможностей.

* оптимизированные для плотного размещения, максимальной гибкости и управляемости;

* идеальное решение для развертывания много серверной конфигурации;

* стоечные и кластерные модели.

Рисунок 2.2 - Внешний вид сервера HP ProLiant DL320 (G3)

Таблица 2.1 Технические характеристики HP ProLiant DL320 (G3)

Устройство

Характеристика

1

2

Процессор

Intel Pentium 4 3,2 ГГц с поддержкой Hyper-Threading и EM64T

Кэш-память

2 MB кэш-памяти второго уровня

Количество процессоров

1

Набор микросхем

Intel E7221 с шиной FSB 800 МГц

Память

2 ГБ PC3200 DDR SDRAM

Сетевой контроллер

двухпортовый интегрированный NC7782 10/100/1000

Слоты расширения

64-бит/133 МГц PCI-X -- 1 (полноразмерный),
64-бит/100 МГц PCI-X -- 1 (в половину длины)

Контроллер/RAID-контроллер

интегрированный двухпортовый SATA контроллер с поддержкой RAID 0/1.

Флоппи-дисковод

опционально

Оптический привод

опционально

Максимальное количество стандартных внутренних дисковых отсеков

2х1" (SATA или SCSI без горячей замены)

Дисковые массивы

500 ГБ (SATA c/без горячей замены)

Интерфейсы

USB 4 последовательный

1 указательное устройство (мышь)

1графический

1клавиатура

1разъем RJ-45

2 iLO remote management

Графический адаптер

интегрированный видеоконтроллер ATI RAGE XL с 8 МБ видеопамяти SDRAM

Форм-фактор

для монтажа в стойку 1U

Соответствие отраслевым стандартам

ACPI 2.0, PCI 2.2 Compliant, PXE Support

WOL Support, Microsoft® Logo certifications

USB 2.0

Функции управления

ASR (Automatic Server Recovery); iLO Advanced Pack (дополнительно); HP Systems Insight Manager; встроенный журнал управления; монитор контроля параметров накопителя (с контроллерами Smart Array); функция динамического восстановления секторов (с контроллерами Smart Array); профилактическая гарантия на жёсткие диски SAS и SCSI, память и процессоры

Управление безопасностью

Пароль на включение питания; пароль клавиатуры; контроль дисковода гибких дисков; контроль загрузки с дискеты; контроль порта USB; съёмные приводы для компакт-дисков и флоппи дисков; пароль администратора

Блок питания

Блок питания с автоматическим определением, 350 Вт, PFC, соответствие CE Mark

Стекируемый коммутатор Gigabit Ethernet 2-го уровня D-Link DES-3526.

Рисунок 2.3

Коммутаторы серии 10/100 Мбит/с D-Link DES-3500 являются взаимно стекируемыми коммутаторами уровня доступа, поддерживающими технологию Single IP Management (SIM, управление через единый IP-адрес). Эти коммутаторы, имеющие 24 или 48 10/100BASE-TX портов и 2 комбо-порта 1000BASE-T/SFP Gigabit Ethernet в стандартном корпусе для установки в стойку, разработаны для гибкого и безопасного сетевого подключения. Коммутаторы серии DES-3500 могут легко объединяться в стек и настраиваться вместе с любыми другими коммутаторами с поддержкой D-Link Single IP Management, включая коммутаторы 3-го уровня ядра сети, для построения части многоуровневой сети, структурированной с магистралью и централизованными быстродействующими серверами.

В основном, коммутаторы серии DES-3500 формируют стек сети уровня подразделения, предоставляя порты 10/100 Мбит/с и возможность организации гигабитного подключения к магистрали. Трафик, передаваемый между устройствами стека, проходит через интерфейсы Gigabit Ethernet с поддержкой полного дуплекса и обычные провода сети, позволяя избежать использования дорогостоящих и громоздких кабелей для стекирования. Отказ от использования этих кабелей позволяет устранить барьеры, связанные с их длиной и ограничениями методов стекирования. В стек могут быть объединены устройства, расположенные в любом месте сети, исключая возможность появления любой точки единственного отказа (single point of failure).

Управление через единый IP-адрес (Single IP Management)

Коммутаторы серии DES-3500 упрощают и ускоряют задачу управления, т.к. множество коммутаторов могут настраиваться, контролироваться и обслуживаться через уникальный IP-адрес с любой рабочей станции, имеющей Web-браузер.

Cтек управляется как единый объект, и все устройства стека определяются по единственному IP-адресу. С помощью встроенного Web-менеджера, можно получить информацию, представленную в виде дерева (Tree View) о членах стека и топологии сети с указанием месторасположения устройств стека и связей между ними. Это простое и достаточно эффективное Web-управление исключает необходимость установки дорогого ПО для SNMP-управления.

В стек можно легко объединить до 32-х коммутаторов, независимо от модели. Виртуальный стек поддерживает любые модели коммутаторов со встроенным Single IP Management. Это означает, что стек может быть расширен коммутаторами, включая коммутаторы 3-го уровня для ядра сети, коммутаторы на основе шасси или любые другие коммутаторы.

Серия DES-3500 обеспечивает расширенный набор функций безопасности для управления подключением и доступом пользователей. Этот набор включает Access Control Lists (ACL) на основе МАС-адресов, портов коммутатора, IP адресов и/или номеров портов TCP/UDP, аутентификацию пользователей 802.1х и контроль МАС-адресов. Помимо этого, DES-3500 обеспечивает централизованное управление административным доступом через TACACS+ и RADIUS. Вместе с контролем над сетевыми приложениями, эти функции безопасности обеспечивают не только авторизованный доступ пользователей, но и предотвращают распространение вредоносного трафика по сети

Для повышения производительности и безопасности сети коммутаторы серии DES-3500 обеспечивает расширенную поддержку VLAN, включая GARP/GVRP, 802.1Q и асимметричные VLAN. Управление полосой пропускания позволяет установить лимит трафика для каждого порта, что дает возможность управлять объемом трафика на границе сети. Коммутатор поддерживает установку резервного источника питания. Другие характеристики включают поддержку 802.3ad Link Aggregation, 802.1d Spanning Tree, 802.1w Rapid Spanning Tree и 802.1s Multiple Spanning Tree для повышения надежности и доступности виртуального стека.

Серия DES-3500 имеет широкий набор многоуровневых (L2, L3, L4) QoS/CoS функций, для гарантии того, что критически важные сетевые сервисы, подобные VoIP, ERP, Intranet или видеоконференции будут обслуживаться с надлежащим приоритетом. Поддерживаются 4 очереди приоритетов для 802.1p/TOS/DiffServ с классификацией на основе МАС-адресов источника и приемник, IP-адресов источника или приемника и/или номеров портов TCP/UDP.

Стекируемый коммутатор Gigabit Ethernet 3-го уровня D-Link DES- 3326SR.

Рисунок 2.4

Коммутаторы нового поколения серии xStack DGS-3300 предоставляют сетям крупных предприятий и предприятий малого и среднего бизнеса (SMB) высокую производительность, гибкость, безопасность, многоуровневое качество обслуживания (QoS) и возможность подключения резервного источника питания. Коммутаторы обеспечивают высокую плотность гигабитных портов для подключения рабочих мест, оснащены слотами SPF для гибкого подключения по оптике, слотами для установки модулей расширения с портами 10 Gigabit Ethernet и поддерживают расширенные функции программного обеспечения. Коммутаторы можно использовать в качестве устройств уровня доступа подразделений или в ядре сети для создания многоуровневой сетевой структуры с высокоскоростными магистралями и централизованным подключением серверов. Провайдеры услуг могут также использовать преимущества коммутаторов с высокой плотностью портов SFP для формирования ядра оптической сети (FTTB).

Виртуальный стек.

Любой из коммутаторов серии DGS-3300 может функционировать в качестве автономного устройства или части масштабируемого стека. Встроенная поддержка технологии Single IP Management позволяет автономному коммутатору стать частью виртуального стека, в котором внутристековый трафик передается по обычным сетевым кабелям, исключая необходимость использования дорогостоящих специализированных кабелей для стекирования. Это позволяет избежать проблем, связанных с длиной кабелей и методом физического стекирования и объединить в виртуальный стек устройства, расположенные в любом месте сети, минимизируя влияние единой точки возможного отказа.

Безопасность, производительность и доступность

Коммутаторы серии DGS-3300 предоставляют широкий набор функций безопасности, включая многоуровневые L2/L3/L4 списки контроля доступа и аутентификацию пользователей 802.1x через серверы TACACS+ и RADIUS. Кроме того, они поддерживают статическую IP v.4/v.6 маршрутизацию на 3 уровне для повышения производительности и безопасности сети. Встроенная технология ZoneDefense представляет собой механизм, позволяющий совместно работать коммутаторам D-Link серии xStack и межсетевым экранам и обеспечивающий активную сетевую безопасность. Функция Zone-Defense автоматически изолирует инфицированные компьютеры сети и предотвращает распространение ими вредоносного трафика.

Для повышения производительности и безопасности коммутаторы серии DGS-3300 обеспечивают расширенную поддержку VLAN, включая GARP/GVRP и 802.1Q. Для поддержки объединенных приложений, включая VoIP, ERP и видеоконференций, широкий набор функций QoS/CoS 2/3/4 уровней гарантирует, что критичные к задержкам сетевые сервисы будут обслуживаться в приоритетном режиме. Для предотвращения загрузки центрального процессор обработкой вредоносного широковещательного трафика, генерируемого злоумышленниками или обусловленного вирусной активностью, коммутаторы серии DGS-3300 предоставляют функцию D-Link Safeguard Engine, позволяющую повысить надежность и доступность сети. Благодаря поддержке функции контроля полосы пропускания для каждого порта можно устанавливать лимиты, гарантируя определенный уровень обслуживания для конечных пользователей. Функция управления полосой пропускания для каждого потока позволяет настраивать типы обслуживания на основе определенных IP-адресов или протоколов.

2.3 Программное обеспечение и настройка коммутационного оборудования

Структура исходной сети представленной на рисунке 2.5 является работающей системой приносящей доход, следовательно, предоставление сервиса для конечных абонентов является приоритетной задачей. При проведение всех работ по реорганизации схемы управления и оптимизации структуры, необходимо обеспечить минимальное прерывание сервиса и возможность отката на старую работающую схему.

Рисунок 2.5

1. Этап подготовки сети.

Определение точной топологии домашней сети, если требуется заведение заявок на исправление (при наличии каких- либо временных каналов связи, каскадных подключениях) Проверка коммутаторов, определение портов сегмента.

2. Выделение требуемого количества сетей для реализации проекта.

Cети для работы OSPF /30

Cети для users /21

Cети для management /22

Сформировать конфиг DHCP сервера.

3. Подготовка конфигов:

Коммутаторов ДС для динамического формирования неблокируемого сервера DHCP

Магистрального оборудования для организации должного пиринга.

4. Запуск маршрутизации:

Терминируем интерфейсы на граничном маршрутизаторе

Терминируем интерфейсы на узлах сегментов

Убедиться, что маршрутизация работает правильно и сети анонсируются.

Удалить default route на узлах, убедиться что маршрут пришел по OSPF.

5.Запуск пользователей

Удаляем аплинк из влана пользователей

Терминируем пользователей на У2

Запускаем DHCP.

6. Убеждаемся, что пользователи начали получать ip и подключаться к vpn серверу.

Все пункты будут выполняться последовательно, с оповещением клиентов и необходимыми промежутками для перехода клиентов на новую адресацию. Планируемый перерыв сервиса не больше минуты на каждого клиента. Проект внедряется на существующем оборудовании без каких либо существенных материальных затрат. L3 трафик проходящий через У-2 достаточно мал и ресурсов DXS-3326GSR вполне хватит для такой схемы организации, единственное затрагивающее нас ограничение в нём это размер таблицы ipfdb в 3000 записей, но при подключении более 2500 клиентов в сегменте - его легко заменить на более мощный, например DGS-3627G с таблицей ipfdb в 8000 записей. L3 функции на У-1 задействованы не будут, и значит повышенных требований к нему не предъявляется. Настройка активного оборудование находиться в Приложение 1.

Расширение входящего канала. При строительстве оптических линий связи используется многожильный оптический кабель. При наличии свободных волокон можно расширить входящий канал, используя технологию агрегирование каналов -- технология, которая позволяет объединить несколько физических каналов в один логический. Такое объединение позволяет увеличивать пропускную способность канала и увеличить надежность канала. Агрегирование каналов может быть настроено как между двумя коммутаторами, так и между коммутатором и сервером. Настройка активного оборудование находиться в Приложение 1.

В качестве платформы для сервера DHCP предлагается использовать Unix-подобную операционную система для ПК, основанную на самых различных, современных архитектурах. Эта операционная система выбрана в первую очередь из-за своей очень высокой надёжности, стабильности, защищённости и высокой производительности. Так же важную роль в выборе этой операционной системы сыграли факторы, что она является операционной системой с открытым кодом и для неё доступны тысячи бесплатных пакетов и прикладных программ. Можно настроить сервер DHCP, используя файл конфигурации /etc/dhcpd.conf приложение 2.

2.3 Информационная безопасность модернизированной домовой локальной вычислительной сети

Безопасность в локальной сети должна обеспечивать администрация сети, но пользователи тоже не должны забывать о безопасности в сети, так как большинство вредоносных программ распространяются через компьютеры пользователей. Таким образом требуется комплекс мер для обеспечения информационной безопасности в сети, как со стороны администрации, так и со стороны рядовых пользователей.

Пользователям сети нужно защищать только свой компьютер, что бы сохранить целостность конфиденциальной информации, скрыть её от других пользователей сети, так же компьютер может стать рассадником вирусов и всевозможных сетевых червей, которые будут мешать работать всем пользователям сети создавая создавать большой локальный трафик. Что бы пользователю защитить свой компьютер ему необходим комплекс программного обеспечения для обеспечения безопасности.

Существует множество программных комплексов защиты компьютера. Например: Kaspersky Internet Security, Norton Internet Security, Panda Internet Security, F-Secure Internet Security и т.д.

Состав этих программных комплексов почти одинаковый и в них входят следующие компоненты:

1. Антивирус:

* Программа осуществляет антивирусную проверку почтового трафика на уровне протокола передачи данных (POP3, IMAP и NNTP для входящих сообщений и SMTP для исходящих сообщений) независимо от используемой почтовой программы;

* Проверка интернет-трафика. Обеспечивает антивирусную проверку интернет-трафика, поступающего по сетевым протоколам, так же осуществляется отдельная проверка HTTP трафика на предмет spyware. В режиме реального времени, позволяя таким образом предотвратить заражение ещё до момента сохранения файлов на жестком диске компьютера;

* Защита файловой системы. Антивирусной проверке подвергаются любые отдельные файлы, каталоги и диски, так же возможна проверка только критических областей операционной системы и объектов, загружаемых при старте ОС;

* Проактивная защита. Осуществляется постоянное наблюдение за активностью программ и процессов, запущенных в оперативной памяти компьютера, и своевременно предупреждает пользователя в случае появления опасных, подозрительных или скрытых процессов; предотвращает опасные изменения файловой системы и реестра, а также восстанавливает систему после вредоносного воздействия.

2. Брандмауэр:

* Блокирует сетевые атаки. Фиксирует попытки сканирования портов компьютера, часто предшествующие сетевым атакам, и успешно отражает наиболее распространенные типы хакерских атак, запрещая взаимодействие с атакующим компьютером. Мониторинг сетевой активности позволяет вести статистику всех соединений;

* Контролирует все сетевые взаимодействия. На основе заданных правил программа контролирует обращения приложений к источникам в сети Интернет и отслеживает входящие и исходящие пакеты данных;

* Делает безопасной работу в любых сетях;

* Обладает режимом невидимости при работе в интернете. Режим невидимости предотвращает обнаружения компьютера извне. При переключении в этот режим запрещается вся сетевая деятельность, кроме предусмотренных правилами исключений, которые определяются самим пользователем.

2.4 Выводы по проектной части

По итогам проведенных этапов по реорганизации схемы управления и оптимизации сети были достигнуты следующие результаты:

снижена загрузка процессорной мощности оборудования рисунок 2.6, 2.7

Рисунок 2.6 -загрузка процессора до сегментации

Рисунок 2.7 -загрузка процессора после сегментации

Сокращен броадкаст домен в десятки раз. Исключено влияние пользователей на оборудование за счет разноса терминации пользовательского интерфейса и интерфейса менеджмента на различном оборудовании.

У узловых коммутаторов создано 3 интерфейса (рисунок 2.8) на которые можно удаленно попасть, и в случае ненормальной активности в сегменте можно будет быстро локализовать проблему, сегмент в среднем состоит из 15-20 домов.

Рисунок 2.8 -интерфейсы оборудования

Трафик между пользователями маршрутизируется напрямую на узловых коммутаторах и не загружает граничный маршрутизатор. Так же для равномерности загрузки с граничного маршрутизатора перенесен DHCP сервер в дата-центр компании.

Сеть подготовлена к росту клиентской базы, вводу в эксплуатацию нового сервиса IPTV, расширен входящий канал до 2гбит\сек, что позволит увеличить скорость на клиентских тарифах.

3. Охрана труда

3.1 Исследование возможных опасных и вредных факторов при эксплуатации ЭВМ и их влияния на пользователей

3.1.1 Введение

Охрана труда -- это система законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

Полностью безопасных и безвредных производственных процессов не существует. Задача охраны труда -- свести к минимуму вероятность поражения или заболевания работающего с одновременным обеспечением комфорта при максимальной производительности труда.

Любой производственный процесс, в том числе работа с ЭВМ, связан с появлением опасных и вредных факторов.

Опасный фактор -- это производственный фактор, воздействие которого на работающего в определенных условиях приводит к травме или другому резкому внезапному ухудшению здоровья.

Вредный фактор -- производственный фактор, приводящий к заболеванию, снижению работоспособности или летальному исходу. В зависимости от уровня и продолжительности воздействия вредный производственный фактор может стать опасным.

В процессе использования ПЭВМ различные вредные факторы, связанные с работой на персональном компьютере, угрожают здоровью, а иногда и жизни оператора. Типичными ощущениями, которые испытывают к концу дня люди, работающие за компьютером, являются: головная боль, резь в глазах, тянущие боли в мышцах шеи, рук и спины, зуд кожи на лице и т. п. Испытываемые каждый день, они могут привести к мигреням, частичной потере зрения, сколиозу, тремору, кожным воспалениям и другим нежелательным явлениям.

Была также выявлена связь между работой на компьютере и такими недомоганиями, как астенопия (быстрая утомляемость глаза), боли в спине и шее, запястный синдром (болезненное поражение срединного нерва запястья), тендениты (воспалительные процессы в тканях сухожилий), стенокардия и различные стрессовые состояния, сыпь на коже лица, хронические головные боли, головокружения, повышенная возбудимость и депрессивные состояния, снижение концентрации внимания, нарушение сна и немало других, которые не только ведут к снижению трудоспособности, но и подрывают здоровье людей.

Основным источником проблем, связанных с охраной здоровья людей, использующих в своей работе автоматизированные информационные системы на основе персональных компьютеров, являются дисплеи (мониторы), особенно дисплеи с электронно-лучевыми трубками. Они представляют собой источники наиболее вредных излучений, неблагоприятно влияющих на здоровье операторов и пользователей.

Конфигурация компьютеризированного рабочего места для работы над дипломом:

· ПК на основе процессора QuadCore Intel Core 2 Quad Q6600, 2400 MHz с необходимым набором устройств ввода-вывода и хранения информации (DVD-RW, HDD);

· лазерный принтер XEROX Phaser 3122 (A4);

· цветной SVGA-монитор LG 17” (TCO 99):

· разрешение по горизонтали (max) -- 1280 пикселей; разрешение по вертикали (max) -- 1024 пикселей;

· легко регулируемые контрастность и яркость;

· частота кадровой развертки при максимальном разрешении -- 56-75 Гц;

· частота строчной развертки при максимальном разрешении -- 30-83 кГц.

Питание ПЭВМ производится от сети 220В. Так как безопасным для человека напряжением является напряжение 40В, то при работе на ПЭВМ опасным фактором является поражение электрическим током.

В дисплее ПЭВМ высоковольтный блок строчной развертки и выходного строчного трансформатора вырабатывает высокое напряжение до 25кВ для второго анода электронно -- лучевой трубки. А при напряжении от 5 до 300 кВ возникает рентгеновское излучение различной жесткости, которое является вредным фактором при работе с ПЭВМ (при 15-25 кВ возникает мягкое рентгеновское излучение).

Изображение на ЭЛТ создается благодаря кадрово-частотной развертке с частотой:

· 85 Гц (кадровая развертка);

· 42 кГц (строчная развертка).

Следовательно, пользователь попадает в зону электромагнитного излучения низкой частоты, которая является вредным фактором.

Во время работы компьютера дисплей создает ультрафиолетовое излучение, при повышении плотности которого > 10 Вт/м2, оно становиться для человека вредным фактором. Его воздействие особенно сказывается при длительной работе с компьютером.

Любые электронно-лучевые устройства, в том числе и электронно-вычислительные машины во время работы компьютера вследствие явления статического электричества происходит электризация пыли и мелких частиц, которые притягивается к экрану. Собравшаяся на экране электризованная пыль ухудшает видимость, а при повышении подвижности воздуха, попадает на лицо и в легкие человека, вызывает заболевания кожи и дыхательных путей.

3.1.2 Выводы

При эксплуатации перечисленных элементов вычислительной техники могут возникнуть следующие опасные и вредные факторы:

1. Поражение электрическим током.

2. Электромагнитное излучение.

3. Ультрафиолетовое излучение.

4. Статическое электричество.

3.1.3 Анализ влияния опасных и вредных факторов на пользователя

Влияние электрического тока

Проходя через тело человека, электрический ток оказывает следующие воздействия:

1. Термическое -- нагрев тканей и биологической среды.

2. Электролитическое -- разложение крови и плазмы.

3. Биологическое -- способность тока возбуждать и раздражать живые ткани организма.

4. Механическое -- возникает опасность механического травмирования в результате судорожного сокращения мышц.

Тяжесть поражения электрическим током зависит от: величины тока, времени протекания, пути протекания, рода и частоты тока, сопротивления человека, окружающей среды, состояния человека, пола и возраста человека. Последствия влияния электрического тока на организм человека представлены на иллюстрации «1. Последствия влияния электрического тока на организм человека»

Электрический ток, воздействуя на человека, приводит к травмам:

· общие травмы:

· судорожное сокращение мышц, без потери сознания;

· судорожное сокращение мышц, с потерей сознания;

· потеря сознания с нарушением работы органов дыхания и кровообращения;

· состояние клинической смерти.

· местные травмы:

· электрические ожоги;

· электрический знак;

· электроавтольмия.

Наиболее опасным переменным током является ток 20-100Гц. Так как компьютер питается от сети переменного тока частотой 50Гц, то этот ток является опасным для человека.

Влияние электромагнитных излучений

Электромагнитные поля с частотой 60 Гц и выше могут инициировать изменения в клетках животных (вплоть до нарушения синтеза ДНК). В отличие от рентгеновского излучения, электромагнитные волны обладают необычным свойством: опасность их воздействия при снижении интенсивности не уменьшается, мало того, некоторые поля действуют на клетки тела только при малых интенсивностях или на конкретных частотах. Оказывается переменное электромагнитное поле, совершающее колебания с частотой порядка 60 Гц, вовлекает в аналогичные колебания молекулы любого типа, независимо от того, находятся они в мозге человека или в его теле. Результатом этого является изменение активности ферментов и клеточного иммунитета, причем сходные процессы наблюдаются в организмах при возникновении опухолей.

Влияние ультрафиолетового излучения

Ультрафиолетовое излучение -- электромагнитное излучение в области, которая примыкает к коротким волнам и лежит в диапазоне длин волн ~ 200-400 нм.

Различают следующие спектральные области:

1. 200-280 нм -- бактерицидная область спектра.

2. 280-315 нм -- зрительная область спектра (самая вредная).

3. 315-400 нм -- оздоровительная область спектра.

При длительном воздействии и больших дозах могут быть следующие последствия:

1. Серьезные повреждения глаз (катаракта).

2. Меломанный рак кожи.

3. Кожно-биологический эффект (гибель клеток, мутация, канцерогенные накопления).

4. Фототоксичные реакции.

Влияние статического электричества

Результаты медицинских исследований показывают, что электризованная пыль может вызвать воспаление кожи, привести к появлению угрей и даже испортить контактные линзы. Кожные заболевания лица связаны с тем, что наэлектризованный экран дисплея притягивает частицы из взвешенной в воздухе пыли, так, что вблизи него «качество» воздуха ухудшается, и оператор вынужден работать в более запыленной атмосфере. Таким же воздухом он и дышит.

Особенно стабильно электростатический эффект наблюдается у компьютеров, которые находятся в помещении с полами, покрытыми синтетическими коврами.

При повышении напряженности поля Е>15 кВ/м, статическое электричество может вывести из строя компьютер.

Из анализа воздействий опасных и вредных факторов на организм человека следует необходимость защиты от них.

3.2 Методы и средства защиты пользователей от воздействия на них опасных и вредных факторов

3.2.1 Методы и средства защиты от поражения электрическим током

Зануление -- преднамеренное соединение нетоковедущих частей с нулевым защитным проводником (иллюстрация 2, стр. 9).

Защитное зануление применяется в трехфазных сетях с глухо заземленной нейтралью, в установках до 1000В и является основным средством обеспечения электробезопасности.

Принцип защиты пользователей при занулении заключается в отключении сети за счет тока короткого замыкания, который вызывает отключение ПЭВМ от сети.

Для отключения ПЭВМ от сети в случае короткого замыкания или других неисправностей в цепь питания ПЭВМ необходимо ставить автомат с Jном = 8 А.

3.2.2 Методы и средства защиты от ультрафиолетового излучения

Энергетической характеристикой является плотность потока мощности [Вт/м2].

Биологический эффект воздействия определяется внесистемной единицей эр: 1 эр -- это поток (280-315 нм), который соответствует потоку мощностью 1 Вт.

Воздействие ультрафиолетового излучения сказывается при длительной работе за компьютером.

Максимальная доза облучения:

· 7.5 мэр*ч/ м2 за рабочую смену;

· 60 мэр*ч/м2 в сутки.

Для защиты от ультрафиолетового излучения применяют:

· защитный фильтр или специальные очки (толщина стекол 2 мм, насыщенных свинцом);

· одежда из фланели и поплина;

· побелка стен и потолка (ослабляет на 45-50%).

3.2.3 Методы и средства защиты от статического электричества

Защита от статического электричества и вызванных им явлений осуществляется следующими способами:

· проветривание без присутствия пользователя;

· влажная уборка;

· отсутствие синтетических покрытий;

· нейтрализаторы статического электричества;

· подвижность воздуха в помещении не более 0.2 м/с;

· иметь контурное заземление.

Для защиты от статического электричества предусмотрены специальные шнуры питания с встроенным заземлением. Там, где это не используется (отсутствует розетка) необходимо заземлять корпуса оборудования.

Также для защиты от воздействия электрического тока все корпуса оборудования, клавиатура, защелки дисководов и кнопки управления выполнены из изоляционного материала.

Для уменьшения влияния статического электричества необходимо пользоваться рабочей одеждой из малоэлектризующихся материалов, например халатами из хлопчатобумажной ткани, обувью на кожаной подошве. Не рекомендуется применять одежду из шелка, капрона, лавсана.

3.2.4 Методы и средства защиты от электромагнитных полей низкой частоты

Защита от электромагнитных излучений осуществляется следующими способами:

· время непрерывной работы -- не более 4 часов в сутки, суммарное время работы за неделю -- не более 20 часов;

· расстояние -- не менее 50 см от источника;

· экранирование экрана монитора, поверхность экрана покрывается слоем оксида олова, либо в стекло ЭЛТ добавляется оксид свинца;

· расстояние между мониторами -- не менее 1,5 м;

· не работать слева от монитора ближе 1.2 м, сзади -- 1 м.

3.2.5 Общие рекомендации при работе с вычислительной техникой

Для защиты от вредных факторов имеющих место при эксплуатации ЭВМ необходимо придерживаться следующих рекомендаций:

· правильно организовывать рабочие места;

· правильно организовать рабочее время оператора, соблюдая ограничения при работе с вычислительной техникой.

3.2.6 Требования к помещениям и организации рабочих мест

Особые требования к помещениям, в которых эксплуатируются компьютеры:

1. Не допускается расположение рабочих мест в подвальных помещениях.

2. Площадь на одно рабочее место должна быть не меньше 6 м2, а объем -- не менее 20 м3.

3. Для повышения влажности воздуха в помещениях с компьютерами следует применять увлажнители воздуха, ежедневно заправляемые дистиллированной или прокипяченной питьевой водой. Перед началом и после каждого часа работы помещения должны быть проветрены.

Рекомендуемый микроклимат в помещениях при работе с ПЭВМ:

· температура 19- 21°С;

· относительная влажность воздуха 55-62%.

В помещениях, где размещены шумные агрегаты вычислительных машин (матричные принтеры и тому подобное), уровень шума не должен превышать 75 дБА, в обычных же помещениях, где стоят персональные машины, допускается максимум 65 дБА.

Снизить уровень шума в помещениях с мониторами и ПЭВМ можно использованием звукопоглощающих материалов с максимальными коэффициентами звукопоглощения в области частот 63-8000 Гц для отделки помещений (разрешенных органами и учреждениями Госсанэпиднадзора России), подтвержденных специальными акустическими расчетами.

Дополнительным звукопоглощением служат однотонные занавеси из плотной ткани, гармонирующие с окраской стен и подвешенные в складку на расстоянии 15-20 см от ограждения. Ширина занавеси должна быть в 2 раза больше ширины окна.

Помещения должны иметь естественное и искусственное освещение. Желательна ориентация оконных проемов на север или северо-восток. Оконные проемы должны иметь регулируемые жалюзи или занавеси, позволяющие полностью закрывать оконные проемы. Занавеси следует выбирать одноцветные, гармонирующие с цветом стен, выполненные из плотной ткани и шириной в два раза больше ширины оконного проема. Для дополнительного звукопоглощения занавеси следует подвешивать в складку на расстоянии 15-20 см от стены с оконными проемами.

Рабочие места по отношению к световым проемам должны располагаться так, чтобы естественный свет падал сбоку, преимущественно-слева.

Для устранения бликов на экране, также как чрезмерного перепада освещенности в поле зрения, необходимо удалять экраны от яркого дневного света.

Рабочие места должны располагаться от стен с оконными проемами на расстоянии не менее 1,5 м, от стен без оконных проемов на расстоянии не менее 1,0 м.

Поверхность пола в помещениях должна быть ровной, без выбоин, не скользкой, удобной для чистки и влажной уборки, обладать антистатическими свойствами.

Освещенность на рабочем месте с ПЭВМ должна быть не менее:

· экрана -- 200 лк;

· клавиатуры, документов и стола -- 400 лк.

Для подсветки документов допускается установка светильников местного освещения, которые не должны создавать бликов на поверхности экрана и увеличивать его освещенность до уровня более 300 лк. Следует ограничивать прямые блики от источников освещения.

Освещенность дисплейных классов, рекомендуемая отраслевыми нормами лежит в пределах 400-700 лк и мощностью ламп до 40Вт.

В качестве источников света при искусственном освещении необходимо применять преимущественно люминесцентные лампы типа ЛБ цветовая температура (Тцв) излучения которых находится в диапазоне 3500-4200°K.

Допускается применение ламп накаливания в светильниках местного освещения. Для того чтобы избегать ослепления, необходимо устранять из поля зрения оператора источники света (лампы, естественный солнечный свет), а также отражающие поверхности (например, поверхность блестящих полированных столов, светлые панели мебели). При электрическом освещении упомянутые требования могут быть удовлетворены при выполнении следующих условий: освещение должно быть не прямым, для чего необходимо избегать на потолке зон чрезмерной освещенности. При этом освещенность должна быть равномерной, потолок должен быть плоским, матовым и однородным. Необходима также достаточная высота потолка для возможности регулирования высоту подвеса светильников.

При установке рабочих мест нужно учитывать, что мониторы должны располагаться на расстоянии не менее 2 метров друг от друга, если брать длины от задней поверхности одного до экрана другого, и 1,2 метра между их боковыми поверхностями. При выполнении творческой работы, требующей «значительного умственного напряжения или высокой концентрации внимания», между компьютерами должны быть установлены перегородки высотой 1,5-2,0 метра.

Дисплей должен поворачиваться по горизонтали и по вертикали в пределах 30 градусов и фиксироваться в заданном направлении. Дизайн должен предусматривать окраску корпуса в мягкие, спокойные тона с диффузным рассеиванием света. Корпус дисплея, клавиатура и другие блоки и устройства должны иметь матовую поверхность одного цвета с коэффициентом отражения 0.4-0.6 и не иметь блестящих деталей, способных создавать блики.

Рабочий стул должен быть подъемно-поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья.

Экран монитора должен находиться от глаз пользователя на расстоянии 600-700 мм, но не ближе 500 мм. В помещениях ежедневно должна проводиться влажная уборка.

Рабочее место должно быть оборудовано подставкой для ног, шириной не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в пределах 150 мм и по углу наклона опорной поверхности до 20 градусов. Клавиатуру следует располагать на поверхности стола на расстоянии 100-300 мм от края, обращенного к пользователю, или на специальной, регулируемой по высоте рабочей поверхности.

3.2.7 Требования к организации работы

Для преподавателей вузов и учителей средних учебных заведений длительность работы в дисплейных классах устанавливается не более 4 часов в день. Для инженеров, обслуживающих компьютерную технику, -- не более 6 часов в день. Для обычного пользователя продолжительность непрерывной работы за компьютером без перерыва не должна превышать 2 часов.

Необходимо делать 15-минутные перерывы каждые 2 часа, менять время от времени позу.

Для тех, у кого смена работы за компьютером 12 часов, установлено -- в течение последних четырех часов каждый час должен прерываться 15-минутным перерывом.

При работе с ПЭВМ в ночную смену, независимо от вида и категории работ, продолжительность регламентированных перерывов увеличивается на 60 минут. В случаях возникновения у работающих с ПЭВМ зрительного дискомфорта и других неблагоприятных субъективных ощущений, несмотря на соблюдение санитарно-гигиенических, эргономических требований, режимов труда и отдыха следует применять индивидуальный подход в ограничении времени работ с ПЭВМ и коррекцию длительности перерывов для отдыха или проводить смену деятельности на другую, не связанную с использованием ПЭВМ.

Профессиональные пользователи обязаны проходить периодические медицинские осмотры. Женщины во время беременности и в период кормления ребенка грудью к работе за компьютером не допускаются.

Необходимо строго регламентировать время и условия работы с компьютером для сотрудников, страдающих заболеваниями опорно-двигательного аппарата, глаз и т.д.

Выбранные методы и способы защиты пользователей от воздействии на них опасных и вредных факторов, при соблюдении эргономических требований, позволяют обеспечить безопасную работу и здоровье.

Заключение

В результате проектирования было произведено успешное внедрение технологии VLAN.

Благодаря данной технологии загруженность текущего оборудования значительно снизилась, появились перспективы масштабирования пользовательских сервисов. Так с внедрением технологии VLAN стал возможен запуск таких сервисов как IPTV (цифровое телевидение), VoIP (телефония), появилась возможность увеличения скорости на клиентских тарифах, за счет увеличения пропускной способности внешнего канала связи.

Подводя итоги всему вышесказанному, следует отметить, что все задачи, поставленные в техническом задании, выполнены. Оптимизация работы сети проведена успешно, и мы получили заметный потенциал для внедрения и развития современных сервисов на сети.

Список использованной литературы

1.
М. Гук «Аппаратные средства локальных сетей.» Энциклопедия - СПб.: Питер, 2004 г. - 573 с.

2. Дж. Скотт Хокдал «Анализ и диагностика компьютерных сетей.» - М.: Лори, 2001 г. - 353 с.

3. Олифер В. Г., Олифер Н. А. Компьютерные сети: принципы, технологии, протоколы. - Учебник для ВУЗов, СПб.: 2004. - 864 с.

4. Поляк-Брагинский «Обслуживание и модернизация локальных сетей.» - Питер, 2005 г. - 546 с.

5. Терри Джонсон. Модернизация и ремонт сетей. - М.: Диалектика-Вильямс, 2000. - 944 с.

6. Шиндер Дебра. Основы компьютерных сетей. - М.: Диалектика-Вильямс, 2002. - 656 с.

7. Дансмор Брэдли, Скандьер. Справочник по телекоммуникационным технологиям. - М.: Диалектика-Вильямс, 2003. - 640 с.

8. Амато, Вито. Основы организации сетей Cisco, том 1, Пер. с англ. - М.: Издательский дом “Вильямс”, 2004. - 512 c.

9. http://www.dlink.ru/products/index.php Технические характеристики оборудования фирмы dlink.

10. «Методические указания по организации и проведению дипломного проектирования», к.т.н., доцент Медведев В.В., Москва, МГИЭМ 2008.

11. ГОСТ 12.0.003-86 Опасные и вредные производственные факторы. Классификация.

12. «Охрана труда на ВЦ», Сибаров Ю.Г. и др. М. 1989 г.

13. ГОСТ 12.1.030-81 Электробезопасность. Защитные заземления, зануления.

14. САНПиН 1340-03 Гигиенические требования к персональным ЭВМ и организация работы.

15. ФЗ РФ №181 1999 г. «Об основах охраны труда в РФ».

Страницы: 1, 2, 3


© 2010 BANKS OF РЕФЕРАТ