Рефераты
 

Сутність та принципи роботи ЕОМ

Сутність та принципи роботи ЕОМ

Курсова робота

ЕОМ - електро-обчислювальнi машини

1. Загальнi положення функцiонування ЕОМ

Електроннi обчислювальнi машини (ЕОМ) з кожним роком знаходять все бiльше застосування у всiх сферах дiяльностi. Вони використовуються в обчислювальних центрах, автоматизованих системах керування (АСУ), iнформацiйно-пошукових системах (IПС) i т.д., тому до ЕОМ пред'являються пiдвищенi вимоги по забезпеченню надiйного функцiонування i високої ймовiрностi результатiв розв'язуваних ними задач.

Для розрахунку надiйностi складних систем, до яких вiдносяться й ЕОМ, у даний час використовуються рiзнi математичнi апарати, кожний з який пристосований для оцiнки надiйностi ЕОМ при визначених допущеннях i обмеженнях. Правильний вибiр методу i вихiдних припущень дозволяє пiдвищити ймовiрнiсть результатiв.

На показники надiйностi ЕОМ i особливо на ймовiрнiсть видаваних ними результатiв iстотний вплив роблять використовуванi методи контролю обчислень i правильностi функцiонування. Кожний з методiв по-своєму впливає на показники ефективностi ЕОМ. Комбiноване використання рiзних методiв контролю дозволяє в багатьох випадках домогтися компромiсу мiж витратами на систему контролю, з одного боку, i витратами на продуктивнiсть ЕОМ i достовiрнiсть результатiв -- з iншої.

Умiння правильне оцiнити вплив тiєї чи iншої системи контролю на достовiрнiсть результатiв рiшення задач обчислювальною машиною, вибрати вiдповiдний метод i розрахувати її показники надiйностi особливо необхiдно розроблювачам обчислювальних систем. На етапi системного проектування, коли тiльки формується представлення про майбутню обчислювальну машину, зважуються задачi, зв'язанi з розподiлом норм надiйностi мiж її складовими частинами, вибором спiввiдношень ефективностi рiзних компонентiв системи контролю, оптимiзацiєю частот включення в роботу рiзних видiв контролю т. д. При цьому необхiдно враховувати специфiку ЕОМ i сферу її майбутнього застосування.

2. Основнi поняття та визначення

Пiд надiйнiстю ЕОМ (а також окремих її пристроїв, блокiв, вузлiв) розумiється їхня властивiсть виконувати заданi функцiї, зберiгаючи в часi значення встановлених експлуатацiйних показникiв у заданих межах, що вiдповiдають заданим режимам i умовам використання, технiчного обслуговування, ремонту, збереження i транспортування.

В залежностi вiд того, чи цiкавляться повною вiдповiднiстю ЕОМ усiм вимогам, запропонованою до неї нормативно-технiчною документацiєю (НТД), чи тiльки її здатнiстю виконувати заданi функцiї, стани ЕОМ роздiляють на справне i несправне або на працездатне i непрацездатне.

Стан, при якому ЕОМ вiдповiдає усiм вимогам, встановленим НТД, називають справним (справнiстю). Якщо ж ЕОМ не вiдповiдає хоча б однiй з вимог НТД, то вона знаходиться в несправному станi (несправнiсть). Порушення справностi ЕОМ називається пошкодженням.

Стан, при якому ЕОМ здатна виконувати заданi функцiї, зберiгаючи значення заданих параметрiв у межах, встановлених НТД, називають працездатним (працездатнiстю). Якщо значення хоча б одного параметра, що характеризує здатнiсть ЕОМ виконувати заданi функцiї, не вiдповiдає встановленим НТД вимогам, то ЕОМ знаходиться в непрацездатному станi (непрацездатнiсть ЕОМ). Порушення працездатностi ЕОМ називається вiдмовою (вiдмовленням).

Поняття несправностi, як правило, ширше поняття непрацездатностi, так що вiдмова може бути одиничним випадком пошкодження. При цьому пошкодження ЕОМ можна подiляти на несуттєвi, при яких працездатнiсть зберiгається (наприклад, вихiд з ладу iндикаторної лампочки, порушення декоративних покриття), i iстотнi, що є причиною порушення працездатностi. При оцiнках надiйностi ЕОМ враховуються тiльки iстотнi несправностi, тобто вiдмови. Однак вiдмови ЕОМ не обов'язково зв'язанi з їхнiми пошкодженнями. Так, наприклад, введення оператором ЕОМ помилкових даних або наявнiсть помилок у програмi ЕОМ можуть привести до одержання невiрних результатiв, тобто вiдмовi. При цьому сама ЕОМ пошкоджень не має.

Як i будь-яка складна система, ЕОМ складається з бiльш простих частин (елементiв), взаємодiючих мiж собою в процесi виконання машинних операцiй, i її працездатнiсть залежить вiд працездатностi елементiв. Змiст поняття елемента конкретизується i в кожному окремому випадку, в залежностi вiд глибини деталiзацiї дослiджуваної системи. Так, наприклад, деякий вузол ЕОМ може розглядатися стосовно блоку (пристрою) не тiльки як елемент, до складу якого вiн входить, але i як система, в свою чергу яка складається з елементiв: iнтегральних мiкросхем, резисторiв, роз'ємiв i iн. Тому з погляду надiйностi пiд елементом розумiють не обов'язково невiд'ємну частину ЕОМ чи логiчний елемент, але й взагалi будь-яку частину (вузол, блок, пристрiй i навiть ЕОМ у цiлому), надiйнiсть якого вивчається без розгляду надiйностi її власних складових частин. У тих випадках, коли поняття надiйностi однаково застосовнi i до деякої системи, i до її елементiв, зручно користатися загальним для них найменуванням -- об'єкт.

3. Оперативна пам'ять та кеш-пам'ять

Оперативна пам'ять (ОЗП) в сучасних комп'ютерах розташована, як правило, на материнськ
iй платi. Перед виконанням, програма (команди для процесора ПК) повинна спочатку бути завантажена в ОЗП. Оперативна пам'ять необхiдна також для збереження промiжних результатiв, якi отримаються в процесi виконання програм процесором. Ця пам'ять є енергозалежною.

Є три основнi типи пам'ятi: conventional або basic (неперервна або базова, тобто основна пам'ять), extended (додаткова або розширена пам'ять, XMS), expended (вiдображена пам'ять, розширена пам'ять, EMS). Крiм цих типiв пам'ятi є ще невеликi областi оперативної пам'ятi, якi мають велике значення для роботи апаратно-програмного забезпечення ПК: область старшої пам'ятi - UMB (Upper Memory Bloks); область верхньої пам'ятi - НМА (High Memory Area).

Базова пам'ять. При розробцi операцiйної системи DOS об'єм пам'ятi був 1 Мбайт. При цьому першi 640 Кбайт з цього об'єму пам'ятi доступнi i використовуються системами i програмами користувачiв. Саме цi 640 Кбайт i прийнято називати базовою або основною пам'яттю. Пiд системнi потреби ПК вiдведено 386 Кбайт пам'ятi. Цю частину пам'ятi називають областю старшої пам'ятi. В цiй областi адрес розташованi спецiальнi дiлянки пам'ятi, якi використовуються апаратними частинами комп'ютера, наприклад, адаптером дисплея. Частина пам'ятi вiдведена для резерву подальшого розвитку архiтектури комп'ютера. В цiй областi розташована енергонезалежна пам'ять - ПЗП (постiйний запам'ятовуючий пристрiй). Її вмiст зберiгається при виникненнi комп'ютера. Ця частина мiстить спецiальнi програми, якi називаються BIOS.

Extended- пам'ять. Оперативна extended- пам'ять починається з адрес вище 1 Мбайта. Цю пам'ять часто називають додатковою пам'яттю. Її використання залежить вiд можливостей операцiйної системи, системного i прикладного програмного забезпечення. Але необхiдно враховувати, що не всi програми можуть використовувати цей тип пам'ятi. Тому при достатньо великому об'ємi оперативної пам'ятi можливi збої при запуску програм. У таких випадках можливе або певне налаштування вiдповiдних драйверiв операцiйної системи, або змiна апаратно-програмної конфiгурацiї, яка задається спецiальними системними файлами, або використання iншого типу пам'ятi. Як альтернатива може бути використана, наприклад, expended- пам'ять.

Expended- пам'ять. Цей вид пам'ятi називають EMS-пам'яттю, розширеною пам'яттю. EMS- пам'ять розташована в адресах вище 1 Мбайта. Але її адресацiя вiдбувається iнакше нiж extended-пам'ять - за допомогою спецiального контролера, який реалiзує адресацiю пам'ятi вище 1 Мбайта у вiдповiдностi до стандарту EMS. Цей тип пам'ятi не є перспективним через низьку швидкiсть її роботи.

Область старшої пам'ятi UMB. Область старшої пам'ятi подiляється на декiлька регiонiв - роздiлiв. У кожного регiону є свiй номер i власний об'єм. В свою чергу кожний регiон подiляється на блоки, якi створює MS DOS щоб завантажувати в них драйвера пристроїв i резидентнi програми. Наприклад, сервiсна оболонка Norton Commander використовує два блоки, а драйвер мишки - один.

Область верхньої пам'ятi HMA. Область верхньої пам'ятi НМА - це першi 64 Кбайт розширеної пам'ятi - expended- пам'ятi. Пам'ять НМА як правило використовується операцiйною системою для розташування своїх модулiв i даних.

Кеш-пам'ять. Використання кеш-пам'ятi значно покращує обмiн даними мiж процесором та напiвпровiдниковому кристалi самого процесора, тобто в його корпусi. Для сучасних комп'ютерiв - 32, 64 Кбайти. Другий рiвень L2 - це кеш-пам'ять, яка може бути розташована на системнiй платi або на кристалi самого процесора. Ця пам'ять призначена для тимчасового збереження даних, якi часто використовуються. Пам'ять цього типу має об'єм вiд 64 Кбайт до 2 Мбайт. Третiй рiвень L3 - це кеш-пам'ять, яка утворена виокремленням i використанням деякої частини звичайної оперативної пам'ятi спецiальними системними програмами. Цей тип пам'ятi використовується, наприклад, для буферизацiї даних при роботi з твердим диском, з дисководом CD-ROM. Використовують цю пам'ять i деякi системнi та прикладнi програми. Мiкросхеми кеш-пам'ятi недоступнi для модернiзацiї i збiльшення об'єму. Цi елементи є невiд'ємною частиною контролерiв сучасних твердих дисководiв.

4. Зовнiшнi носiї інформації

Зовнiшнi носiї iнформацiї призначенi для накопичення iнформацiї, створення резервних копiй i т.д. для подальшого її використання незалежно вiд стану комп'ютера (включений чи виключений). Вони є енергонезалежнi та можуть використовувати рiзнi фiзичнi принципи зберiгання iнформацiї - магнiтний, оптичний, електронний.

По методу доступу до iнформацiї зовнiшнiх носiїв iнформацiї подiляються на пристрої з прямим та послiдовним доступом. Прямий доступ (direct access) - можливiсть звернення до блокiв по їх адресам у будь-якому порядку. Традицiйними пристроями з прямим доступом є дисковi накопичувачi, з послiдовним - є накопичувачi на магнiтнiй стрiчцi.

Головна характеристика пристроїв - ємнiсть зберiгання (capacity), яка вимiрюється в Кбайтах, Мбайтах, Гбайтах та Тбайтах. Важливими загальними параметрами пристроїв є час доступу, швидкiсть передачi даних та питома вартiсть збереження iнформацiї.

Час доступу (access time) визначається як середнiй iнтервал вiд видачi запиту на передачу блоку даних до фактичного початку передачi. Дисковi пристрої мають час доступу вiд одиниць до сотень мiлiсекунд.

Швидкiсть запису i зчитування iнформацiї визначається як вiдношення об'єму записуваних або зчитуваних даних до часу, який витрачається на операцiю.

Швидкiсть передачi даних (Transfer Speed, Transfer Rate) визначається як продуктивнiсть обмiну даними, яка вимiряється пiсля виконання пошуку даних.

Визначення питомої вартостi збереження iнформацiї для накопичувачiв з фiксованими носiями залишається постiйною, а для змiнних потрiбно пам'ятати про вартiсть самих пристроїв накопичування.

Гнучкi дисководи. Зараз найбiльш поширенi 3,5 дюймовi дискети з об'ємом 1,44 Мбайти. Стандартний формат дискети HD-двостороннi, 80 дорiжок, 18 секторiв по 512 байт на дорiжцi. Дисководи розрахованi на гнучкi диски мають малий об'єм i низьку швидкодiю.

Твердi дисководи. На сьогоднiшнiй день об'єм дисководiв становить 120 Гбайт. Середнiй час доступу складає 5-12 мс. Альтернативою для традицiйних дисководiв стали пристрої, якi поєднують магнiтну i оптичну технологiю запису i читання даних - магнiтооптичнi нагромаджувачi (МО). Його поверхня покрита спецiальним шаром магнетика. Iнформацiя на диску зберiгається у виглядi послiдовностi намагнiчених дiлянок. Але на сьогоднi МО поступаються твердим дискам швидкiстю запису. МО зручнi при роботi з мультимедiа.

CD-ROM диски. CD-ROM - пам'ять на диску, яка використовується тiльки для читання iнформацiї. На компакт-диску використовується єдина спiральна дорiжка, нанесена на поверхню диску. При оцiнцi швидкостi зчитування з компакт-диску за еталон прийнято величину 150 Кбайт. Диск, який забезпечує таку швидкiсть зчитування iнформацiї, називається 1-швидкiсним.

DVD диски. Вдосконалення оптичних методiв запису iнформацiї i досвiду експлуатацiї вiдповiдних пристроїв, таких як CD, CD-ROM сприяли появi i розвитку технологiй DVD, якi базуються на використаннi дискiв DVD - унiверсальний цифровий запис. Диски DVD можуть бути як одностороннi так i двостороннi. На кожнiй сторонi можуть бути один або два робочих шари, якi мiстять iнформацiю в цифровому виглядi. Це дозволяє нарощувати об'єм диску вiд 4,7 до 17 Гбайт.

CD-R, CD-RW, DVD-RAM. Розвиток iнформацiйних технологiй викликав потребу створення пристроїв для збереження iнформацiї великого об'єму, можливостi перезапису. Така технологiя давно використовується в нагромаджувачах з одноразовим записом i багаторазовому зчитуваннi. Записування вiдбувається шляхом “пропалювання”. У результатi отримуємо компакт-диск, який можна використовувати як звичайний CD-ROM.

5. Рiзновид системних плат та чiпсети

Найважливiшим вузлом ПК є системна плата (main board). На нiй розташованi процесор, оперативна пам'ять, BIOS, чiпсет, допомiжнi мiкросхеми. СП в основному визначає продуктивнiсть та функцiональнi можливостi комп'ютера, включаючи можливiсть модернiзацiї. Високi параметрi СП досягаються за рахунок їх постiйного удосконалення, що базується на використаннi новiших комп'ютерних технологiй. Вибираючи системну плату (далi СП), потрiбно розглянути її з усiх сторiн. Не потрiбно забувати про технiчну пiдтримку на професiйному рiвнi та технiчну документацiю.

При оцiнюваннi будь-якого IВМ - сумiсного комп'ютера можна видiлити наступнi критерiї: процесор, посадочне мiсце процесора, швидкодiя системної плати, кеш-пам'ять, модулi оперативної пам'ятi, тип шини, BIOS, конструкцiя, вмонтованi iнтерфейси, технологiя Plag-and-Play (PnP), керування живленням, чiпсети, документацiя.

Процесор. Потрiбно врахувати пiдтримку процесора, та можливiсть удосконалення.

Посадочне мiсце процесора. Кожний тип процесорiв має своє посадочне мiсце - слот або сокет. При виборi материнської плати потрiбно враховувати сумiснiсть процесора та посадочного мiсця на материнськiй платi.

Швидкодiя системної плати. На системнiй платi є перемикач тактової частоти, якщо нi, тодi управлiння проводиться BIOS-ом. Кожний тип процесорiв працює з материнською платою на визначених частотах, їх може бути кiлька.

Приклад. На СП з процесором 486 повинен бути перемикач тактової частоти для роботи на частотах 33 та 40 МГц. Цi системнi плати можуть допускати перемикання на iншi частоти. Системна плата з процесором Pentium або Pentium Pro повинна мати тактову частоту 50, 60 або 66 МГц з можливiстю перемикання мiж цими значеннями. Pentium 75 працює на СП з частотою 50 МГц; Pentium 60, 90, 120, 150 i 180 МГц працюють на СП iз тактовою частотою 60 МГц; Pentium 66, 199, 133, 166 i 200 МГц працюють при встановленнi тактової частоти СП, рiвнiй 66 МГц; Pentium Pro 150, 180 i 200 працюють на частотах системної плати 50, 60 i 66 МГц вiдповiдно. На даний час частота СП досягає 800 МГц.

Кеш-пам'ять. Деякi старi СП мають рознiми для встановлення додаткових модулiв кеш-пам'ятi 2-го рiвня. Сучаснi СП не всi мають такi рознiми, оскiльки кеш-пам'ять 2-го рiвня вмонтована на кристалi процесора.

Модулi оперативної пам'ятi. Модулi пам'ятi вiдрiзняються не тiльки конструктивно, а ще й ємнiстю, швидкодiєю та робочою частотою. Їх можна класифiкувати по-рiзному, а саме: по ємностi, робочiй частотi. Розрiзняють такi типи оперативної пам'ятi: SIMM, DIMM, DRAM, SDRAM, DDR, RIMM та iншi.

Приклад. СП з процесором 486 можуть мати рознiми для 30 та 72-контактних модулiв SIMM. На СП з процесорами Pentium та Pentium Pro можуть бути встановленi 72-контактнi SIMM або 168-контактнi модулi DIMM. Завдяки 64-розряднiй конструкцiї цих плат 72-контактнi модулi SIMM можна встановлювати парами а модулi DIMM - по одному. Для забезпечення максимальної продуктивностi необхiднi системи, якi пiдтримують модулi SDRAM (Synchronous DRAM) i EDO (Extended Data Out). Для процесорiв Pentium 4 можна використовувати модулi RIMM, DDR, DIMM, а для процесорiв типу Athlon - DDR, DIMM в залежностi вiд пiдтримки СП. На даний час найбiльша робоча частота модуля RIMM, що становить 800 МГц.

Тип шини. Системнi плати можуть мати шини ISA, PCI, AGP, USB, AMR, кожна з яких працює на своїй частотi. Тому при виборi СП слiд звернути увагу на периферiйнi пристрої, якi будуть приєднуватись до СП.

BIOS. В СП повинна виконуватись стандартна програма BIOS (базова система введення-виведення). Для спрощення модернiзацiї BIOS повинна бути записана в мiкросхемах Flash-ROM або EEPROM i пiдтримувати технологiю Plag-and-Play, Enhanced IDE або Fast ATA. В BIOS повинна передбачатися система розширеного управлiння живлення АРМ (Advanced Power Management).

Конструкцiя. Найбiльш унiверсальною є конструкцiя типу Baby AT. Її можна встановлювати в корпуси рiзної конструкцiї i модифiкувати в бiльшостi комп'ютерiв. Для досягнення бiльш високої продуктивностi i унiверсальностi в багатьох СП i комп'ютерах використовується нова конструкцiя АТХ. Для того, щоб вибрати корпус потрiбно врахувати розмiри СП.

Вмонтованi iнтерфейси. СП повинна мати як можна бiльше вмонтованих контролерiв та iнтерфейсiв (крiм вiдеоадаптера). На нiй повиннi бути встановленi контролер дисководу, рознiм Enhanced IDE локальної шини (РСI або VL-Bus), два вмонтованих послiдовних порти (з мiкросхемами UART типу 16550А) i високошвидкiсний паралельний порт (EPP або ECP). Також бажано вмонтований рознiм для пiдключення мишки типу PS/2, хоч для цього можна використовувати будь-який послiдовний порт. Деякi новi системи включають вмонтований стандарт USB (Universal Serial Bus), а також AGP та AMR. Вмонтований порт SCSI є ще одною перевагою iнтерфейсу ASPI (Advanced SCSI Programming Interface). На платi може бути встановлений мережний адаптер, звукова карта, вiдео адаптер.

Технологiя Plag-and-Play (PnP). СП повинна пiдтримувати стандарт Plag-and-Play фiрми Intel. Це забезпечує автоматичну конфiгурацiю адаптерiв РСI, а також ISA-адаптерiв стандарту Plag-and-Play.

Керування живленням. СП повинна пiдтримувати всi можливостi процесорiв модифiкацiї SL Enhanced з системою розширеного керування живленням АРМ (Advanced Power Management)i способи керування системою SMM (System Management Mode), якi дозволяють переводити рiзнi вузли комп'ютера на рiзнi рiвнi готовностi та енергопотреби.

Чiпсети. СП мають велику кiлькiсть рiзних чiпсетiв. Саме краще використовувати самi новi чiпсети.

Документацiя. СП обов'язково повиннi супроводжуватися технiчною документацiєю. В нiй повиннi описуватися всi перемикачi та перемички якi є на СП, розводки контактiв всiх рознiмiв, параметри мiкросхем кеш-пам'ятi, модулiв SIMM та других елементiв замiни, а також повинна знаходитися i iнша необхiдна iнформацiя.

6. Основнi параметри чiпсетiв

Практично всi чiпсети, на основi яких побудованi сучаснi материнськi плати, мають в свойому складi засоби, забезпечивши як мiнiмум пiдтримку:

* процесорiв Pentium (Celeron) або Athlon (Duron), а також їх аналогiв;

* шини процесора (FSB) з частотою 66/100/133 МГц;

* пам'ятi SDRAM об'ємом 256 Мбайт на модулях DIMM;

* шини AGP 1X/2X/4X;

* клавiатури та манiпулятора мишi;

* послiдовних та паралельного портiв;

* двох портiв IDE з протоколом UltraDMA/33/66/100/133;

* двох портiв USB (з швидкiстю передачi до 12 Мбiт/с);

* до чотирьох пристроїв РСI та iн.

Класична архiтектура чiпсетiв передбачає використання основних мiкросхем набору, що називаються North Bridge (Пiвнiчний мiст) та South Bridge (Пiвденний мiст). При цьому за параметри та функцiональнi можливостi, пов'язанi з роботою процесора, вiдеоадаптера, оперативної пам'ятi та шини РСI, в основному вiдповiдає пiвнiчний мiст. За пристроями з iнтерфейсами IDE та USB, послiдовними та паралельним портами, шину ISA, зв'язок з BIOS та периферiйними пристроями, робота яких характеризується вiдносно низькими потоками iнформацiї - пiвденний мiст.

Chipset та i815E Chipset

Ч
iпсети i815 (i815 Chipset, комерцiйна назва Solano) та i815Е (i815Е Chipset) побудованi на основi використання хабової архiтектури (Accelerated Hub Architecture) i призначенi для високопродуктивних комп'ютерiв з процесорами типу Pentium II/III та Celeron з рознiмами Slot 1 та Socket 370 i частотою шини FSB 66/100/133 МГц.

Вмонтований контролер пам'ятi пiдтримує: 64-бiтний iнтерфейс пам'ятi SDRAM, об'єм пам'ятi вiд 32 до 512 Мбайт; мiкросхеми SDRAM 16/64/128/256 Мбiт, до 3 модулiв DIMM PC100 SDRAM (double sided DIMM) або 3 (single sided DIMM) модуля DIMM PC133 SDRAM при частотi шини пам'ятi 133 МГц.

Вмонтованi засоби пiдтримують: AGP 2.0 з пiдтримкою режимiв AGP 1X/2X/4X, iнтегровану графiку на основi i712 (до 1600х1200 при 8 бiтах на колiр та вертикальнiй розгортцi 85 Гц); до 6 пристроїв РСI; 2 (i815) або 4 (i815Е) порти USB; 2 порти IDE або з UltraDMA/33/66 (i815), або з UltraDMA/33/66/100 (i815Е); iнтерфейс LPC (Low Pin Count); контролер LAN (i815E); AC'97 audio з 2 (i815) або з 6 (i815Е) каналами; ACPI; монiторинг та iншi функцiї та пристрої.

На даний час, як було згадано вище, iснує велике рiзноманiття мiкро-контролерiв системних плат (iнакше називають - чiпсет), але одними iз найкращих для процесорiв типу Pentium II/III та Celeron є i815 Chipset та i815E Chipset. Для персональних комп'ютерiв, якi призначенi для роботи з офiсними додатками можна використовувати i815Е Chipset, так як вiн має iнтегрований вiдеоадаптер. Його можливостi повнiстю задовольняють роботу офiсних додаткiв. При бажаннi можна поставити новий вiдеоадаптер, вiдключивши вмонтований в BIOS.

VIA Apollo KT133 та VIA Apollo KT133A

Ч
iпсет VIA Apollo KT133 орiєнтований на системи з використання процесорiв AMD Athlon з рознiмом типу Socket A (Socket 462), до яких вiдносяться процесори початкового рiвня AMD Duron та високопродуктивнi AMD Thunderbird.

Розрахований на роботу з шиною FSB типу EV6 - шиною, що здiйснює передачу даних по передньому i задньому фронтах тактового сигналу - DDR (Double Data Rate). Тактова частота шини FSB для чiпсета VIA Apollo KT133 у випадку використання процесорiв AMD Athlon складає 100 Мгц, що дозволяє забезпечувати передачу даних з частотою 200 МГц (100 МГц DDR).

Пiдтримує асинхронну 64-розрядну шину пам'ятi з частотами роботи 66/100/133 МГц, типи пам'ятi РС100, РС133 SDRAM, VCM (Virtual Channel Memory) SDRAM (VCM133) - до 1,5 Гбайт (при використаннi мiкросхем пам'ятi 256 Мбiт), 8 банкiв, CAS-before-RAS або self refresh, UltraDMA/33/66, до 5 РСI - пристроїв, чотири порти USB, AGP 1X/2X/4X, включаючи пiдтримку режиму SideBand Addressing (SBA), AC'97 Audio, MC'97 Modem, iнтегрованi IO/APIC, Hardware monitoring, Advanced mobile power management, Clock stop, сумiснiсть РС99 i т.д.

В процесi роботи над удосконалення архiтектури технологiї свої спецiалiзованих наборiв системної логiки фiрма VIA випустила удосконалений варiант чiпсету VIA Apollo KT133А. Цей чiпсет, володiючи всiма властивостями прототипу, на вiдмiну вiд нього пiдтримує 266 МГц (133 МГц DDR). При цьому, як показує практика, новий варiант чiпсету успiшно працює i при великих значення тактової частоти процесорної шини, що робить його дуже перспективним в режимах розгону (overclocking).

На даний момент VIA Apollo KT133А користується великою популярнiстю для процесорiв з тактовою частотою до 1000 Гц. Для процесорiв Athlon з тактовою частотою вище 1 ГГц використовуються бiльш потужнi чiпсети VIA Apollo KT266/266А/333/400. Процесор AMD Athlon 2,2 ГГц визнаний найбiльш продуктивним на чiпсетi VIA Apollo KT400.

7. Класифiкацiя, назва та короткi параметри процесорiв

У технiчнiй лiтературi, прес-релiзах, а також у попереднiх анонсах розроблювачiв i виробникiв нерiдко використовуються кодовi найменування процесорiв та їх архiтектури. Однак пiсля офiцiйного оголошення цi ж вироби стають вiдомi вже пiд iншими iменами. При цьому з маркетингових розумiнь процесорам, створеним за рiзною технологiєю та маючи вiдмiнностi в архiтектурi своїх ядер, часто привласнюються однаковi iмена. Таке положення речей дезорганiзує не тiльки починаючих користувачiв, але нерiдко i фахiвцiв.

8. Класифiкацiя процесорiв фiрми Intel

Pentium - першi процесори сiмейства P5 (березень 1993 р.). Перше поколiння Pentium носило кодове iм'я P5, а також i80501, напруга живлення була 5 В, розташування виходiв - "матриця", тактовi частоти - 60 i 66 Мгц, технологiя виготовлення - 0,80-мiкронна, частота шини дорiвнює частотi ядра. Випускалися в конструктивi пiд Socket 4.

Розвитком цього сiмейства став P54, вiн же i80502, напруга живлення ядра була знижена з 5 В до 3,3 В, розташування виходiв - "шахова матриця", технологiя - 0,50 мкм, а потiм 0,35 мкм. Тактова частота ядра - 75-200 Мгц, шини - 50, 60, 66 Мгц. Обсяг кеш-пам'ятi L1 - 16 Кбайт. Уперше вона була роздiлена - 8 Кбайт на данi i 8 Кбайт на iнструкцiї. Рознiм Socket 7. Архiтектура IA32, набiр команд не змiнювався з часiв процесорiв i386.

Pentium MMX (P55, сiчень 1997 р.). Додався новий набiр iз 57 команд MMX. Технологiя - 0,35 мкм. Напруга живлення ядра зменшилося до 2,8 В. Процесори вимагали змiни в архiтектурi материнських плат, тому що подвiйне електроживлення вимагало установки додаткового стабiлiзатора напруги. Обсяг кеш-пам'ятi L1 був збiльшений у два рази i склав 32 Кбайта. Внутрiшня тактова частота - 166-233 МГц, частота шини - 66 Мгц. Розрахованi на Socket 7. Стали останнiми в лiнiйцi процесорiв Pentium для комп'ютерiв Desktop.

Pentium Pro - першi процесори шостого поколiння, випущенi в листопаду 1995 р. Уперше застосована кеш-пам'ять L2, об'єднана в одному корпусi з ядром i працююча на частотi ядра процесора. Процесори мали дуже високу собiвартiсть виготовлення. Випускалися спочатку за технологiєю 0,50 мкм, а потiм по 0,35 мкм, що дозволило збiльшити обсяг кеш-пам'ятi L2 iз 256 до 512, 1024 i 2048 Кбайт. Тактова частота - вiд 150 до 200 Мгц. Частота шини - 60 i 66 Мгц. Кеш-пам'ять L1 - 16 Кбайт. Рознiм Socket 8. Пiдтримували всi iнструкцiї процесорiв Pentium, а також ряд нових iнструкцiй (CMOV, FCOMI i т.д.). В архiтектуру була введена подвiйна незалежна шина (DIB). Надалi всi нововведення успадкували Pentium II. Архiтектура Pentium Pro значно випередила свiй час.

Pentium II/III - сiмейство P6/6x86, першi представники з'явилися в травнi 1997 р. Сiмейство цих процесорiв поєднує пiд загальним iм'ям процесори, призначенi для рiзних сегментiв ринку: Pentium II (Klamath, Deschutes, Katmai) - для масового ринку ПК середнього рiвня, Celeron (Covington, Mendocino, Dixon i т.д.) - для недорогих комп'ютерiв, Xeon (Xeon, Tanner, Cascades i т.д.) - для високопродуктивних серверiв i робочих станцiй. Рознiми Slot 1, Slot 2, Socket 370, а також вiдповiднi варiанти для мобiльних комп'ютерiв.

Katmai - найменування ядра (вересень 1999 р.) процесорiв Pentium III. Додано блок SSE (Streaming SIMD Extensions), розширений набiр команд MMX, удосконалений механiзм потокового доступу до пам'ятi. Техпроцес - 0,25 мкм, тактова частота - 450-600 МГц, кеш-пам'ять L2, розмiщена на процесорнiй платi, - 512 Кбайт. Рознiм - Slot 1. Частота шини - 100 МГц, але в зв'язку з затримкою Coppermine були випущенi моделi 533 i 600 МГц, розрахованi на частоту шини процесора 133 Мгц.

Celeron - сiмейство процесорiв, орiєнтованих на масовий ринок недорогих комп'ютерiв. У це сiмейство входять моделi, створенi на основi архiтектури Covington, Mendocino, Dixon, Coppermine. Уперше з'явилися в квiтнi 1998 року. Випускалися спочатку для Slot 1, надалi - для Socket 370.

Tualatin-256K - кодове найменування ядра i процесорiв Socket 370 Pentium III, зроблених по 0,13 мкм техпроцесу. Це останнi Pentium III. Вiдрiзняються вiд попередникiв бiльш удосконаленими архiтектурою та технологiєю виробництва. Характеризуються зниженою напругою живлення i меншим енергоспоживанням. Робоча частота моделей для Desktop iз FSB 100 МГц - 1,0, 1,1 ГГц, а з FSB 133 МГц - 1,13 ГГц i вище.

Pentium 4 - наступнi пiсля Coppermine принципово новi 32-нi процесори Intel для звичайних PC. Замiсть традицiйних GTL+ i AGTL+ використовується нова системна шина Quad Pumped 100 Мгц, що забезпечує передачу даних iз частотою 400 Мгц i передачу адрес iз частотою 200 Мгц. Кеш-пам'ять L1 - 8 Кбайт, L2 - 256 Кбайт. В архiтектуру введений ряд удосконалень, спрямованих на збiльшення тактової частоти i продуктивностi. Введено новий набiр iнструкцiй SSE2. Першi моделi на основi ядра Willamette iз тактовою частотою 1,4-1,5 ГГц випущенi 20 жовтня 2000 року. Рознiм - Socket 423. Остання модель розрахована на частоту 2 ГГц, пiсля чого ядро Willamette змiнюється на Northwood.

Merced - кодове найменування ядра i першого процесора 64-ої архiтектури, апаратно сполучино з 32-ою архiтектурою. Включає трьохрiвневу кеш-пам'ять обсягом 2-4 Мбайт. Продуктивнiсть приблизно в три рази вище, нiж у Tanner. Технологiя виготовлення - 0,18 мкм, частота ядра - 667 Мгц i вище, частота шини - 266 Мгц. Перевершує Pentium Pro по операцiях FPU у 20 разiв. Фiзичний iнтерфейс - Slot M. Пiдтримує MMX i SSE. Офiцiйне найменування - Itanium.

9. Класифiкацiя процесорiв фiрми ADM

K5 - першi процесори AMD, анонсованi як конкурент Pentium. Рознiм - Socket 7. Подiбно Cyrix 6x86, використовували PR-рейтинг iз показниками вiд 75 до 166 Мгц. При цьому використовувана частота системної шини складала вiд 50 до 66 Мгц. Кеш-пам'ять L1 - 24 Кбайт (16 Кбайт для iнструкцiй i 8 Кбайт для даних). Кеш-пам'ять L2 розташована на материнськiй платi i працює на частотi процесорної шини.

K6 - процесори, анонсованi як конкурент Pentium II. Першi моделi вироблялися за технологiєю 0,35 мкм, надалi - 0,25 мкм (кодове iм'я "Little Foot"). Процесори працювали на частотi вiд 166 до 233 Мгц. Були створенi на базi дизайну процесора 686 вiд придбаної AMD компанiї NexGen. У порiвняннi зi своїми попередниками одержали модуль MMX, збiльшився обсяг кэша L1 - до 64 Кбайт (по 32 Кбайт для iнструкцiй i даних).

K6-2 - наступне поколiння K6 iз кодовим iм'ям "Chomper". Процесор вийшов у травнi 1998 року, основним удосконаленням є пiдтримка додаткового набору iнструкцiй 3DNow! i частоти системної шини 100 Мгц. Кеш-пам'ять L1 - 64 Кбайт (по 32 Кбайт для iнструкцiй i даних), кэш L2 знаходиться на материнськiй платi i може мати обсяг вiд 512 Кбайт до 2 Мбайт, працюючи на частотi шини процесора. Першi моделi мали частоту ядра 266 Мгц.

K6-2+ - однi з останнiх Socket 7 процесорiв AMD. I першi Socket 7 процесори, зробленi з використанням 0,18 мкм техпроцесу.

K6-III (Sharptooth) - першi процесори вiд AMD, що мають кеш-пам'ять L2, об'єднану з ядром. Останнi процесори, зробленi пiд платформу Socket 7. Фактично, являють собою просто K6-2 iз 256 Кбайт кеш-пам'яттю L2 на чiпi, що працює на тiй же частотi, що i ядро процесора. Кеш-пам'ять L1 має обсяг 64 Кбайт (по 32 Кбайт для iнструкцiй i даних), кеш-пам'ять L3 знаходиться на материнськiй платi i може мати обсяг вiд 512 Кбайт до 2 Мбайт, працюючи на частотi шини процесора. Першi моделi, випущенi в лютому 1999 року, були розрахованi на 400 i 450 Мгц.

K7 - першi процесори, архiтектура й iнтерфейс яких вiдрiзняються вiд Intel. Обсяг кеш-пам'ятi L1 - 128 Кбайт (по 64 Кбайт для iнструкцiй i даних). Кеш-пам'ять L2 - 512 Кбайт, що працює на 1/2, 2/5 або 1/3 частоти процесора. Процесорна шина - Alpha EV-6. Тактова частота шини - 100 Мгц iз передачею даних при 200 Мгц. Пiдтримуванi набори iнструкцiй - MMX i розширений у порiвняннi з K6-III набiр 3DNow!. Рознiм - Slot A. Одержав найменування Athlon. Були випущенi моделi 500-1000 Мгц. Ядро K75 - алюмiнiєвi з'єднання, K76 - мiднi.

Thunderbird - найменування ядра процесорiв Athlon, випущених за технологiєю 0,18 мкм iз використанням технологiї мiдних з'єднань. На чiпi iнтегрованi 256 Кбайт повношвидкiсного exclusive кэша L2. Як перехiдний варiант якийсь час випускався пiд рознiм Slot A. Однак основний рознiм є Socket A. Модель iз частотою 1,33 ГГц демонструє велику продуктивнiсть на офiсних завданнях, чим процесор Intel Pentium 4 iз частотою 1,7 ГГц. Технологiчний потенцiал ядра Thunderbird надає можливiсть випуску виробiв iз частотою до 1,5 ГГц.

Athlon - найменування процесорiв, створених на основi архiтектур K7, К75, К76, Thunderbird у варiантах Slot A i Socket A (Socket 462). Високопродуктивнi процесори, орiєнтованi на сектор комп'ютерiв High-End.

Duron - найменування лiнiйки процесорiв, орiєнтованих на сектор комп'ютерiв Low-End. Є конкурентами процесорiв Celeron, однак володiють меншою цiною i бiльшою продуктивнiстю при рiвних робочих частотах. Побудованi на варiантi ядра Thunderbird з урiзаної до 64 Кбайт кеш-пам'яттю L2. Випускаються тiльки пiд рознiм Socket A.

Palomino - кодове найменування ядра процесорiв Athlon, що пришли на змiну архiтектурi Thunderbird. Передбачають незначнi архiтектурнi змiни з метою полiпшення швидкiсного потенцiалу процесора. Наприклад, у складi ядра використовуються полiпшений блок пророкування розгалужень i апаратна попередня вибiрка з пам'ятi. Процесори на новому ядрi не будуть пiдтримувати SSE2. Iнформацiя про те, що конвеєр у ядрi Palomino буде мiстити бiльше число ступiней, не пiдтверджується. Palomino буде швидше, нiж Thunderbird, що працює на тiй же частотi. Socket A залишиться основним процесорним гнiздом ще на 2-3 роки, фiрма AMD не має намiру змiнювати фiзичний iнтерфейс своїх процесорiв. Palomino буде працювати на материнських платах, що пiдтримують шину EV6 iз частотою 266 Мгц. У виробництвi процесорiв буде використана технологiя мiдних з'єднань. Молодшi моделi розрахованi на тактову частоту ядра 1,533 ГГц i вище.

10. Операцiйна система

Операцiйна система - це програма, що завантажується при включеннi комп'ютера. Вона вiдповiдає за дiалог з користувачем, здiйснює керування комп'ютером, його ресурсами (оперативною пам'яттю, мiсцем на дисках i т.д.), запускає iншi (прикладнi) програми на виконання. Операцiйна система забезпечує користувачу i прикладним програмам зручний спосiб спiлкування (iнтерфейс) iз пристроями комп'ютера. Основна причина необхiдностi операцiйної системи полягає в тому, що елементарнi операцiї для роботи з пристроями комп'ютера i керування ресурсами комп'ютера - це операцiї дуже низького рiвня, тому дiї, що необхiднi користувачу i прикладним програмам, складаються з декiлькох чи сотень тисяч таких елементарних операцiй.

Операцiйна система DOS складається з наступних частин:

Базова система введення-виведення (BIOS), що знаходиться в постiйнiй пам'ятi (постiйному запам'ятовуючому пристрої, ПЗУ) комп'ютера. Ця частина операцiйної системи є "вбудованою" у комп'ютер. Її призначення складається у виконаннi найбiльш простих i унiверсальних послуг операцiйної системи, зв'язаних зi здiйсненням уведення-виведення . Базова система введення-виведення мiстить також тест функцiонування комп'ютера, що перевiряє роботу пам'ятi i пристроїв комп'ютера при включеннi його електроживлення. Крiм того, базова система введення-виведення мiстить програму виклику завантажника операцiйної системи.

Завантажник операцiйної системи - це дуже коротка програма, що знаходиться в першому секторi кожної дискети з операцiйною системою DOS. Функцiя цiєї програми полягає в считуваннi в пам'ять ще двох модулiв операцiйної системи, що i завершують процес завантаження DOS.

На жорсткому диску (вiнчестерi) завантажник операцiйної системи складається з двох частин. Це зв'язано з тим, що жорсткий диск може бути розбитий на кiлька роздiлiв (логiчних дискiв). Перша частина завантажника знаходиться в першому секторi жорсткого диска, вона вибирає, з якого з роздiлiв жорсткого диска варто продовжити завантаження. Друга частина завантажника знаходиться в першому секторi цього роздiлу вона зчитує в пам'ять модулi DOS i передає їм керування.

Дисковi файли I0.SYS i MSDOS.SYS (вони можуть називатися по-iншому- назви мiняються в залежностi вiд версiї операцiйної системи). Вони завантажуються в пaмять завантажником операцiйної системи i залишаються в пам'ятi комп'ютера постiйно. Файл I0.SYS являє собою доповнення до базoвої системи введення-виведення в ПЗУ. Файл MSDOS.SYS реалiзує основнi високорiвневi послуги DOS.

Командний процесор DOS обробляє команди, що вводяться користувачем. Командний процесор знаходиться в дисковому файлi COMMAND.СОМ на диску, з якого завантажується операцiйна система. Деякi команди користувача командний процесор виконує сам. Такi команди називаються внутрiшнiми. Для виконання iнших (зовнiшнiх) команд користувача командний процесор шукає на дисках програму з вiдповiдним iм'ям i якщо знаходить її, то завантажує в пам'ять i передає їй керування. По закiнченнi роботи програми командний процесор видаляє програму з пам'ятi i виводить повiдомлення про готовнiсть до виконання команд (запрошення DOS).

Страницы: 1, 2


© 2010 BANKS OF РЕФЕРАТ