Рефераты
 

Обработка заготовок на токарных станках

p align="left">Температура в зоне резания зависит от физико-механических свойств обрабатываемого материала, режимов резания, геометрических параметров режущего инструмента и применяемой смазочно-охлаждающей жидкости. При обработке стали выделяется больше теплоты, чем при обработке чугуна. Чем выше прочность и твердость обрабатываемого материала, тем выше температура в зоне контакта инструмента, которая при тяжелых условиях работы может достигать 1000 - 1100 С.

При увеличении подачи температура в зоне резания повышается, но менее интенсивно, чем при увеличении скорости резания. Еще меньше влияет на температуру глубина резания.

С увеличением угла резания и главного угла в плане температура в зоне резания возрастает, а с увеличением радиуса скругления резца уменьшается. Применение смазочно-охлаждающей жидкости существенно уменьшает температуру в зоне резания.

Температура в зоне резания оказывает непосредственное влияние на износостойкость инструмента, состояние обрабатываемого материала, качество обработанной поверхности и производительность резания.

9. Изнашивание режущих инструментов

Изнашивание режущего инструмента при резании металлов значительно отличается от изнашивания деталей машин. Зона резания характеризуется высокой химической чистотой трущихся поверхностей, высокими температурой и давлением в зоне контакта.

Механизм изнашивания инструмента при резании металлов очень сложен. Здесь имеют место абразивное, адгезионное и диффузионное изнашивание. Удельное влияние каждого из них зависит от свойств контактирующих материалов инструмента и детали, условий обработки (прежде всего от скорости резания).

Абразивное изнашивание инструмента заключается во внедрении материала стружки в рабочую поверхность инструмента. При этом съем металла с рабочей поверхности инструмента происходит микроцарапаньем.

Адгезионное изнашивание инструмента происходит в результате схватывания или прилипания трущихся поверхностей и последующего отрыва мельчайших частиц материала инструмента.

Результатом этого вида изнашивания, происходящего при температурах ниже 900С, являются кратеры на рабочих поверхностях инструмента, при слиянии которых образуются лунки. При этом действие адгезионного изнашивания усиливается в зоне низких и средних скоростей резания. Уменьшить адгезионное изнашивание можно повышением твердости инструмента.

Диффузионное изнашивание инструмента происходит в результате взаимного растворения металла детали и материала инструмента. На активность процесса растворения оказывает влияние высокая температура (900 - 1200єС) контактного слоя, возникающая при высоких скоростях резания. Это приводит к изменению химического состава и физико-химических свойств поверхностных слоев инструмента, снижает его износостойкость. Поэтому диффузионное изнашивание можно рассматривать как разновидность химического изнашивания.

Чем выше механические свойства обрабатываемого материала и содержание в нем углерода, хрома, вольфрама, титана, молибдена, тем интенсивнее изнашивание инструмента. Наибольшее влияние на интенсивность изнашивания оказывает скорость резания, меньшее - подача и глубина резания.

Как правило, инструменты изнашиваются по передней и задней поверхности.

Стойкость инструмента характеризуется его способностью без переточки возможно длительное время обрабатывать заготовки в соответствии с техническими требованиями. Стойкость определяется временем непосредственной работы (исключая время перерывов) инструмента от переточки до переточки на заданном режиме резания до наступления принятого критерия затупления. Это время называют периодом стойкости или стойкостью инструмента, его обозначают буквой Т и измеряют в минутах.

10. Влияние смазочно-охлаждающей жидкости на процесс резания

Смазочно-охлаждающие жидкости (СОЖ) благоприятно воздействуют на процесс резания металлов, значительно уменьшают износ режущего инструмента, повышают качество обработанной поверхности и снижают затраты энергии, а также препятствуют образованию нароста у режущей кромки инструмента и способствуют удалению стружки и абразивных частиц из зоны резания.

При обработке чугуна и других хрупких материалов СОЖ не применяют, так как эффект от их действия незначителен. При работе твердосплавным инструментом на высоких скоростях необходимо подавать обильную и непрерывную струю жидкости, так как при прерывистом охлаждении могут образоваться трещины в режущих пластинках из твердого сплава.

Наиболее эффективны СОЖ при резании вязких, пластичных и сильно упрочняющихся при деформации металлов. При этом с увеличением толщины среза и скорости резания положительный эффект на стружкообразование от действия СОЖ уменьшается.

СОЖ должны обладать высокими охлаждающими, смазывающими, антикоррозионными свойствами и быть безвредными для работающего. Все применяемые жидкости можно разбить на две основные группы: охлаждающие и смазочные. К первой группе относят водные растворы и эмульсии, обладающие большой теплоемкостью и теплопроводностью. Ко второй группе относят СОЖ, обладающие высокой маслянистостью: минеральные масла, керосин, растворы в масле или керосине поверхностно-активных веществ. Применяют также осерненные масла, так называемые сульфофрезолы, содержащие в качестве активированной добавки серу.

11. Жесткость и вибрации системы станок - приспособление - инструмент - деталь

Возникающие при резании металла нагрузки воспринимаются инструментом и приспособлением для его крепления, а также деталью и приспособлением для ее установки и крепления. Возникающие нагрузки передаются через приспособления на узлы и механизмы станка. Образуется замкнутая технологическая система: станок - приспособление - инструмент - деталь.

В процессе обработки сила резания не остается постоянной из-за изменения сечений срезаемой стружки, припуска на обработку, неравномерности механических свойств материала и распределения силы резания. Изменение силы резания вызывает затупление и износ режущего инструмента, наростообразование и ряд других факторов, влияющих на процесс резания. Под действием изменяющихся сил резания элементы системы станок - приспособление - инструмент - деталь деформируются, изменяя тем самым условия резания, трения и работы привода станка. Характер изменения условий обработки зависит от жесткости указанной системы, то есть способности препятствовать перемещению ее элементов при воздействии на них нагрузок. Жесткость является одним из основных критериев работоспособности станка и его точности работы под нагрузкой.

Характер изменения колебаний во времени называют вибрациями. Колебания при резании разделяют на вынужденные, когда причиной колебаний являются периодически действующие возмущающие силы, и автоколебания, которые не зависят от действия периодически возмущающих сил. Источниками возмущающих сил вынужденных колебаний являются неуравновешенные части станка (шкивы, зубчатые колеса, валы); дефекты в передаточных звеньях; неуравновешенность обрабатываемой заготовки; неравномерный припуск на обработку и другие факторы.

Основными источниками возникновения автоколебаний являются изменение сил резания из-за неоднородности механических свойств обрабатываемого материала; появление переменной силы резания за счет срыва нароста; изменение сил трения на поверхностях инструмента вследствие изменения скорости резания в процессе обработки; следы вибраций от предыдущего рабочего хода, вызывающие изменение сил резания и упругие деформации обрабатываемой детали и резца и др. На интенсивность автоколебаний оказывают влияние физико-механические свойства обрабатываемого материала, параметры режима резания, геометрические параметры инструмента, жесткость отдельных элементов и всей системы станок - приспособление - инструмент - деталь, зазоры в отдельных звеньях этой системы.

Зная причины возникновения вибраций, можно найти способы их уменьшения. Однако эти пути не всегда являются рациональными. Например, увеличение главного угла в плане, хотя и уменьшает вибрации, но вместе с тем увеличивает интенсивность изнашивания режущего инструмента и т.д. Поэтому необходимо применять такие способы уменьшения вибраций, которые не снижали бы производительности и качества обработки.

12. Шероховатость. Точность обработки

На поверхностях деталей после обработки режущим инструментом на металлорежущих станках всегда остаются неровности. Совокупность микронеровностей, образующихся на поверхности детали, называют шероховатостью поверхности. Шероховатость поверхности оказывает непосредственное влияние на качество неподвижных и подвижных соединений в машинах. Например, детали с грубой поверхностью не обеспечивают в неподвижных соединениях требуемой точности и качества сборки, а в подвижных соединениях быстро изнашиваются и не выдерживают первоначальных зазоров.

На поверхности, обработанной токарным резцом, образуются микронеровности в виде винтовых выступов и винтовых канавок. Микронеровности, расположенные в направлении подачи, образуют поперечную шероховатость, а микронеровности, расположенные в направлении скорости резания, - продольную шероховатость.

Высота и характер микронеровностей зависят от обрабатываемого материала, режимов резания, геометрии режущих кромок инструмента и др. Микронеровности на поверхности деталей в большинстве случаев являются следами режущих кромок инструмента, расположение которых зависит от подачи. Изменяя геометрические параметры режущего инструмента и режимы резания, можно существенно менять характеристики шероховатости поверхности при обработке одинаковых по физико-механическим свойствам материалов.

Шероховатость обработанной поверхности повышается, когда обработку ведут на скоростях резания, способствующих наростообразованию. При обработке на высоких скоростях резания шероховатость обработанной поверхности снижается. По мере увеличения скорости резания глубина наклепа возрастает.

С увеличением скорости резания и уменьшением шероховатости до оптимальной износостойкость и коррозионная стойкость увеличиваются. Усталостная прочность повышается с увеличением степени и глубины наклепа, а также с повышением остаточных напряжений сжатия.

При увеличении подачи шероховатость обработанной поверхности повышается, глубина наклепа возрастает. Увеличение подачи способствует также увеличению остаточных напряжений и уменьшению износостойкости и коррозионной стойкости. Усталостная прочность в этом случае повышается.

Шероховатость обработанной поверхности возрастает по мере затупления инструмента. Применение тщательно доведенного инструмента способствует уменьшению глубины наклепа. Износостойкость и усталостная прочность изменяются до установленных оптимальных значений шероховатости и наклепа. Увеличение радиуса закругления режущей кромки способствует увеличению глубины наклепа и остаточных напряжений. С увеличением глубины наклепа и остаточных напряжений усталостная прочность повышается.

Явление слипаемости материала заготовки с передней поверхностью инструмента приводит к увеличению высоты микронеровностей, и наоборот, при использовании твердосплавных и керамических резцов шероховатость снижается.

В производственных условиях шероховатость обработанных поверхностей оценивают методом сравнения с образцом. Для этого обработанную деталь аттестуют по качеству поверхности в лабораторных условиях, а затем она служит эталоном при контроле качества обработки аналогичных деталей.

Размеры и другие параметры детали должны иметь минимальные отклонения от указанных на чертеже. Их разность определяет погрешность обработки и не должна превышать предельных значений размеров и допусков, указанных в чертеже.

Погрешности подразделяют на систематические и случайные. К систематическим относят погрешности, которые определяют точность обрабатываемой детали. Основными причинами систематических погрешностей являются: неточность станка; неточность изготовления режущих инструментов и приспособления и их износ; деформация инструментов и приспособлений; деформация заготовки. Причины систематических погрешностей можно установить и устранить.

К случайным относят погрешности, возникающие в результате случайных упругих деформаций заготовки, станка, приспособления и режущего инструмента.

13. Паспорт токарного станка

Паспорт является основным техническим документом, в котором содержатся основные технические данные и характеристики станка: наибольшие размеры обрабатываемых заготовок деталей, пределы частот вращения шпинделя, пределы подач; наибольшее усилие, допускаемое механизмом подач; мощность электродвигателя главного привода; габаритные размеры и масса станка. В паспорте приводятся основные параметры суппортов, шпинделя, резцовой головки, задней бабки и других основных частей станка, а также сведения по механике главного привода и подач: частота прямого и обратного вращения шпинделя или планшайбы; наибольший допустимый крутящий момент, соответствующий частоте вращения шпинделя или планшайбы; ступени рабочих подач суппортов и скорости установочных перемещений, эскизы важнейших деталей станка с указанием рабочего пространства и крайних положений перемещения узлов и т.п.

В паспорте приводится комплект приспособлений и принадлежностей, поставляемых заказчику со станком, сменные и запасные зубчатые колеса, инструмент для обслуживания станка, ремни для главного привода, патроны, оправки, люнеты, центры упорные и вращающиеся, шкивы, вспомогательный инструмент и др.

В паспорте приводятся результаты испытания токарного станка на соответствие его нормам точности и жесткости, которые показывают допускаемые и фактические значения точности перемещений основных частей станка, а также точность обработки и качество обработанной поверхности образцов деталей. Паспорт станка необходим в процессе ремонта и эксплуатации станка, для выбора типа станка при разработке технологического процесса, назначения режимов обработки, проектирования оснастки и т.д.

14. Кинематика и узлы токарного станка

Движение в токарном станке осуществляется посредством передач, последовательно соединенных между собой. Передачей называется устройство, передающее движение с одного вала на другой, преобразующее вращательное движение в поступательное или поступательное во вращательное.

Механизм передачи движения токарно-винторезного станка.

Наиболее простая передача - ременная, передающая движение посредством двух шкивов и ремня, охватывающего шкивы. Ременные передачи бывают плоскоременные и клиноременные. Клиноременные передачи по сравнению с плоскоременными могут передавать большую мощность и более надежны в работе.

Зубчатую передачу широко используют в токарном станке. Посредством такой передачи обеспечивается постоянство передаточного отношения. Зубчатые колеса (шестерни) бывают цилиндрические и конические. Цилиндрические колеса а применяют для передачи вращения между валами, расположенными параллельно; конические колеса - для валов, расположенных перпендикулярно друг к другу. Зубчатые колеса характеризуются числом зубьев, шагом колеса и модулем.

Червячная передача б состоит из червячного колеса 1 и червяка 2. Червяк представляет собой винт с трапецеидальной нарезкой, а зубья червячного колеса имеют вогнутую криволинейную форму. Такую передачу применяют для передачи вращения между валами, оси которых расположены под углом 90є.

Винтовую передачу в применяют для преобразования вращательного движения в поступательное. Примером винтовой пары может служить механизм движения суппорта станка, когда вращательное движение винта преобразуется в поступательное движение гайки. Винтовые пары используют и для ускоренного перемещения суппорта. В этом случае винт имеет многозаходную нарезку.

Реечная передача г служит для преобразования вращательного движение в поступательное и применяется для ручного перемещения суппорта.

Для получения на токарном станке детали требуемой формы и размера необходимо сообщить детали и резцу согласованные друг с другом движения. Эти движения можно разделить на главное и вспомогательные.

Главное движение - это движение резания (вращение шпинделя определяет скорость резания) и движение подачи (перемещение резца и суппорта определяет подачу резания).

Вспомогательные движения: установочное движение - это суммарное движение вращения детали и перемещения инструмента (определяет исходное положение детали и инструмента к началу обработки), движения управления станком в процессе резания, движения для закрепления заготовок и их снятия со станка. Вспомогательные движения на токарных универсальных станках выполняются вручную, на автоматах - с помощью механизмов станка автоматически в определенные промежутки времени в соответствии с циклограммой обработки детали.

Кинематической парой называют устройство, передающее движение с одного вала на другой или преобразующее движение из одного вида в другой.

Кинематической цепью называют совокупность соединенных между собой кинематических пар от источника движения до конечного рабочего органа станка, которому необходимо передать движение.

Как правило, источником движения в токарном станке является электродвигатель.

Кинематической схемой называют изображение кинематических пар в кинематической цепи.

Токарно-винторезный станок 16К20

Станки токарной группы имеют однотипную компоновку узлов. Рассмотрим основные узлы токарных станков на примере токарно-винторезного станка 16К20. Его основными узлами являются: станина 1, передняя бабка 9, задняя бабка 19, коробка подач 6, фартук 30 и суппорт 23.

Станина является основанием станка и служит для крепления на ней основных узлов. Наиболее ответственной частью станины являются направляющие, на которых перемещается каретка суппорта и задняя бабка. На переднем конце станины закреплена передняя бабка. Направляющие имеют форму призмы и плоскости, которые пришабрены для повышения их точности.

Назначение передней бабки - закрепить заготовку и передать ей вращательное движение.

Наиболее ответственной частью передней бабки является шпиндель - основной вал коробки подач, служащий для передачи вращения заготовке. Для приведения шпинделя во вращение, а также для изменения его частоты вращения в корпусе передней бабки имеется коробка подач. Она расположена внутри чугунного корпуса передней бабки и состоит из зубчатых колес, валов и др.

Принцип работы коробки скоростей одинаков во всех конструкциях токарно-винторезных станков вплоть до станков нового поколения с ЧПУ. Коробка скоростей передает вращение от электродвигателя.

Суппорт предназначен для крепления и перемещения резца в процессе резания.

Задняя бабка предназначена для поддержания второго конца заготовки и придания ей определенного положения при обработке в центрах. Заднюю бабку часто используют для установки в ней сверл, зенкеров и разверток.

На верхней плоскости каретки суппорта установлен резцедержатель или резцовая головка, в которой винтами крепится резец.

15. Автоматизация и механизация токарной обработки

Чтобы повысить производительность и качество токарной обработки, рациональнее использовать рабочее время токаря и повысить эффективность его труда, проводят постоянную работу по автоматизации и механизации токарных станков. Автоматизация - это процесс создания приборов, устройств и механизмов, которым частично или полностью передаются функции управления станком и контроля качества обработки деталей. Механизация - это оснащение станка устройствами, которые облегчают труд токаря и освобождают его от выполнения физически тяжелых, трудоемких и утомительных работ. Технические средства автоматизации и механизации токарного станка схематически представлены на рисунке.

К средствам механизации относят транспортные средства, зажимные устройства (самозажимные поводковые патроны, патроны с пневмо- или гидрозажимом, заднюю бабку с гидро- или пневмоприводом пиноли), механизированный привод подач резцовых салазок, задней бабки, а также гидросуппорт, который позволяет обрабатывать заготовки по копиру, закрепляемые в центрах и в патроне, по наружным и внутренним поверхностям.

Гидросуппорт устанавливают вместо обычного суппорта. Задающим движением для суппорта является продольная (для обработки наружных или внутренних поверхностей) или поперечная (при обработке торцовых поверхностей) подача. Копир 15 устанавливают на неподвижной поверхности станка профилем вдоль обрабатываемой поверхности. Масло от насоса 1 с мотором М по гибкому шлангу 2 подается в полость 3 цилиндра 4, из которой по калиброванному отверстию в поршне 5 перетекает в полость 6. Поршень 5 крепится к неподвижным салазкам суппорта. Так как площадь поршня 5 в полости 3 в два раза меньше площади поршня 5 в полости 6, то при одинаковом давлении масла в обеих полостях суппорт 16 будет подведен к линии центров. Давление масла в полости 6 регулируется золотником 10 гидрораспределителя 8, который под действием пружины 11 стремится перекрыть канал 7; при этом штоком 12 и рычагом 13 наконечник 14 щупа прижимается к копиру 15. При движении по копиру наконечника 14 рычаг 13 сжимает пружину 11 и изменяет проходное сечение для выхода масла из полости 6 в сливную магистраль 9. При этом давление в полости 6 будет падать при сохранении давления в полости 3, что сместит суппорт 4 в направлении от оси центров и относительно неподвижного поршня 5. Вместе с суппортом 4 переместится корпус гидрораспределителя 8 и приведет систему в равновесие.

К средствам автоматизации можно отнести устройства управления (датчики, кулачки, ограничители, конечные выключатели, упоры) и измерения, загрузочные устройства, устройства уборки стружки, действие которых скоординировано с работой станка и требует вмешательства рабочего только при наладке станка или при подналадке в процессе работы.

При обслуживании станка применяют различные загрузочные устройства для сортового материала (прутков, труб, проволоки и т.п.) и штучных заготовок (поковок, штамповок, отливок). Загрузочные устройства для штучных заготовок в зависимости от степени автоматизации делят на механизированные (подъемно-транспортное оборудование), полуавтоматические (магазинные устройства), автоматические (бункерные устройства, роботы-манипуляторы).

В условиях серийного производства деталей эффективно использование автоматов и полуавтоматов, обрабатывающих детали типа втулок, колец, валов, включая контроль их размеров, автоматически, без участия рабочего, который следит за исправной работой автомата, периодически загружает его заготовками и контролирует качество обработки.

Обработка деталей на полуавтомате производится с участием рабочего, который производит смену заготовки, пуск станка, измерение обработанной детали и др.

Токарные автоматы и полуавтоматы в зависимости от ориентации оси шпинделя подразделяют на горизонтальные и вертикальные, в зависимости от количества шпинделей - на одношпиндельные и многошпиндельные, в зависимости от применяемой заготовки (пруток, труба, поковка, отливка, штамповка и др.) - на прутковые и патронные.

Автоматы и полуавтоматы, связанные между собой транспортными и загрузочными устройствами, образуют автоматизированные участки (если имеется возможность переналадки на обработку другой детали) или автоматическую линию (если такая возможность практически отсутствует).

Станки с ЧПУ по сравнению с обычными имеют следующие преимущества: повышение производительности и сокращение времени переналадки станка с одной детали на другую; сокращение сроков подготовки производства и др.

Высокая эффективность достигается при использовании станков с ЧПУ для обработки деталей со сложными криволинейными поверхностями. Большинство токарных станков с ЧПУ применяют для обработки ступенчатых валов, осей, втулок, фланцев, дисков и др.

Токарные станки с ЧПУ имеют высокую степень автоматизации. У них может быть автоматизировано (кроме формообразующих движений) переключение частот вращения шпинделя, смена инструментов, включение и выключение охлаждения, регулирование расхода СОЖ, Включение и выключение механизмов стружкодробления и стружкоудаления. По характеру управления движения органов станка системы ЧПУ делят на позиционное, контурное и смешанное.

Позиционное программное управление - это управление станками, необходимое для автоматической установки рабочего органа в позицию, заданную программой.

Контурное числовое программное управление применяется для обработки деталей сложной формы с криволинейными поверхностями. Это управление обеспечивает автоматическое перемещение рабочего органа по траектории, заданной программой.

Комбинированное числовое программное управление сочетает функции контурного и позиционного программного управления.

Современное состояние металлорежущего оборудования с программным управлением предусматривает следующие основные типы этого оборудования и управляющих систем.

Станки с оперативными системами программного управления, обеспечивающими подготовку управляющей программы непосредственно на рабочем месте, на основе широкого использования типовых технологических циклов обработки, хранящихся в памяти устройства. Эта группа станков должна заменить наиболее распространенные универсальные токарные станки. Станки с оперативными системами управления рассчитаны на обслуживание рабочим, способным в режиме диалога с системой управления сформировать управляющую программу, вводя конкретные значения в стандартный технологический цикл обработки. На станках этой группы обрабатывают партии деталей в полуавтоматическом режиме; при работе на них производительность повышается в 1,5-2 раза по сравнению с универсальным оборудованием.

Многоцелевые станки оснащают многопроцессорными, продуктивными системами управления, обеспечивающими резкое упрощение формирования управляющей программы, введение необходимых коррекций на отклонение заготовки, инструментов, режимов обработки, предусматривающих наличие устройства для диагностики состояния всех основных систем станка, предупреждение брака и другие функции. Эта группа станков ориентирована на серийное производство деталей и обеспечивает рост производительности в 2-3 раза по сравнению с универсальными станками с ручным управлением.

Для обработки наиболее сложных и дорогих деталей, в первую очередь деталей тяжелого машиностроения, предусмотрен выпуск станков, характеризующихся наличием универсальных систем программного управления со встроенными ЭВМ и свободным программированием необходимых алгоритмов обработки, повышением роли системы управление в коррекции погрешностей механических сборочных единиц станка и измерительных систем.

Оборудование с функциональными системами программного управления, обеспечивающими управление режимом обработки (главным приводом и приводом подач), последовательностью работы механизмов станка, предельными перемещениями по осям координат. К этой группе относятся автоматические линии для механической обработки, у которых повышается коэффициент использования за счет применения электронного управления циклами работы, счетчиков работы инструментов с одновременным использованием центральной ЭАМ для диагностики и планирования работы всего комплекса; автоматы и агрегатные станки с переналаживаемыми циклами работы, пригодные к использованию в крупносерийном производстве; токарно-револьверные станки с автоматическим циклом работы, задаваемым электронной системой управления.

Гибкие производственные системы на основе совместного использования станков с программным управлением и промышленных роботов для комплексной обработки широкой номенклатуры деталей, а также выполнения ряда сборочных операций.

Высокоавтоматизированные, гибкие производственные модули с программным управлением, требующие ограниченного вмешательства обслуживаемого персонала, способные автономно функционировать в течение одной - двух смен и предназначенные для обработки деталей типа тел вращения и корпусных деталей.

Огромное число морально устаревших станков может быть рационально использовано путем модернизации силами предприятия. Модернизация оборудования не является временным мероприятием. В связи с тем, что моральное старение станочного оборудования происходит значительно быстрее его физического износа, промышленные предприятия вынуждены постоянно заниматься вопросами модернизации станков.

Экспериментальный научно-исследовательский институт металлорежущих станков (ЭНИМС) разработал ряд типовых проектов модернизации наиболее распространенных моделей станков. Однако по этим проектам можно модернизировать лишь малую часть устаревших станков как вследствие многообразия их моделей, так и из-за разнообразия целей модернизации.

Ниже перечислены основные задачи модернизации токарных станков:

повышение мощности и быстроходности станка, достигаемое модернизацией привода главного движения;

увеличение подачи путем модернизации привода подачи;

повышение степени автоматизации станка для сокращения вспомогательного времени обработки;

автоматизация цикла обработки;

расширение технологических возможностей станка.

Существует несколько способов модернизации привода главного движения станка: повышение быстроходности привода главного движения, повышение быстроходности шпинделя, использование приставных коробок скоростей.

16. Вклад отечественной науки в исследование процессов резания металлов

В начале 18 века русский механик и изобретатель А.К. Нартов создал самоходный суппорт для токарного станка и ряд других станков оригинальной конструкции. В середине 18 века гениальный русский ученый М.В. Ломоносов изобрел сферотокарный станок для обработки металлических зеркал, построил лоботокарные и шлифовальные станки.

Основоположником учения о резании металлов является профессор И.А. Тиме, впервые сформулировавший основные законы резания. В 1870г. был опубликован доклад Тиме «Сопротивление металлов и дерева резанию», где подробно описан процесс образования стружки и произведена ее классификация, дана формула расчета силы резания.

Начало научного исследования микрогеометрии обработанной поверхности положено профессором В.Л. Чернышевым, при содействии которого в 1893 г. на Тульском оружейном заводе проводились измерения размеров и шероховатости обработанных поверхностей. В то же время профессор К.А Зворыкин изложил оригинальную теорию процесса резания, впервые применил гидравлический динамометр для определения сил резания. В 1912 г. Я.Г. Усачев более подробно исследовал явления, происходящие при резании металлов. Его особой заслугой является применение металлографии для исследования процессов резания и разработка метода определения температуры рабочей части резца с помощью термопары.

Советские ученые и инженеры разработали и внедрили в производство процессы резания с большими скоростями и подачами, усовершенствованные конструкции режущего инструмента, обеспечивающие производительность и точность обработки деталей с высокой эффективностью.

Важную роль в развитии теории резания металлов играет тесная связь науки с производством. Часто открытие или изобретение, сделанное рабочим, получает теоретическое обоснование, дальнейшее развитие и широкое распространение в промышленности.

Список литературы:

1. Фещенко В.Н., Махмутов Р.Х. Токарная обработка / Учеб. для проф. учеб. заведений. - 3-е изд.

2. Горбунов Б.И. Обработка металлов резанием, металлорежущие инструменты и станки.

3. В.А. Блюмберг, Е.И. Зазерский Справочник токаря.

4. Справочник конструктора-инструментальщика.

5. В.А. Захаров, А.С. Чистоклетов Токарь.

6. В.П. Шатин, Ю.В. Шатин Справочник конструктора-инструментальщика

7. Г.В. Филиппов Режущий инструмент.

8. В.И. Захаров Технология токарной обработки

9. Н.Н. Чернов Металлорежущие станки

10. В.И. Баранчиков Прогрессивные реж. инструменты и режимы резания металлов.

Страницы: 1, 2


© 2010 BANKS OF РЕФЕРАТ