Основные принципы организации и функционирования производства на машиностроительном предприятии
p align="left">L = (ЕTпр) / Тмц,равенство: где ЕTпр - суммарное время простоя всех станков (по графику) в течение цикла Тмц . Если расчеты сделаны верно, то должно выполняться N = D + H + L. 3 Норму обслуживания N проверяют на соответствие норме выработки: D > D н и критерию нормальной занятости рабочего K зц*K знц. Если эти условия выполняются, то норма обслуживания принимается и внедряется в производство. Норма обслуживания оборудования для рабочего не должна превышать 3 - 4 станков; для обслуживания рабочему следует подбирать станки с примерно одинаковыми значениями (Tс + T з). В этом случае простои станков в течение цикла многостаночного обслуживания будут минимальными. Методика расчета нормы обслуживания оборудования в случае нециклических (стохастических) процессов. При нециклических процессах оборудование обслуживается по мере остановки, без соблюдения одного и того же порядка обхода станков. В этом случае величины Tс и T з имеют существенные колебания и расчет нормы обслуживания оборудования N и численности рабочих Ч должен осуществляться с учетом вероятностных закономерностей - теории массового обслуживания. Расчет N и Ч по формулам теории массового обслуживания весьма трудоемок, поэтому следует пользоваться готовыми таблицами нормативов для определения оптимальных норм N и Ч (табл. 2.4). Более подробные таблицы нормативов можно найти в справочниках нормировщика. Существует два варианта использования таблицы нормативов для определения оптимальных норм обслуживания оборудования N и численности рабочих Ч: 1) участок, на котором установлены станки в количестве N единиц, не разделяется на зоны обслуживания между рабочими численностью Ч. Это вариант бригадной формы организации труда на участке; 2) участок поделен между рабочими на зоны обслуживания. В этом варианте обслуживания оборудования требуется большая численность рабочих на производственном участке, чем в случае бригадной формы организации труда. П р и м е р . На участке установлено 18 станков-автоматов. Определить численность операторов станков для двух вариантов разделения труда на участке: 1) бригадная форма организации труда; 2) с разделением участка на зоны обслуживания. Для выполнения производственной программы в состоянии непрерывной работы должно находиться 15,59 станка из 18, имеющихся на участке. Средний коэффициент занятости оператора на одном станке-автомате составляет 0,085 (8,5 %). Р е ш е н и е . 1) В табл. 2.4 находим необходимое число действующих станков D = 15,59 и для этой величины определяем численность Ч операторов - 2 человека. Другими словами, если на участке установлено N = 18 станков, то два оператора смогут поддерживать в состоянии работы 15,59 станка, что обеспечит выполнение производственной программы участка. 2) Разделим участок на две зоны, в каждой из которых будет по девять станков и по одному человеку. В таблице нормативов находим, что для N = 9 и Ч = 1 - количество действующих станков D = 7,46. Следовательно, в двух зонах будет действовать 7,46 ? 2 = 14,92 станка, что меньше необходимого количества 15,59. Очевидно, что необходимо увеличить количество зон на участке. Разобьем участок на три зоны обслуживания, в каждой из которых будет по шесть станков и одному человеку. В таблице нормативов находим, что для N = 6 и Ч = 1 - количество действующих станков D = 5,23. Следовательно, в трех зонах будет действовать 5,23 х 3 = 15,69 станка, что больше необходимого количества 15,59. Таким образом, три оператора на участке, разделенном на три индивидуальные зоны обслуживания, смогут обеспечить выполнение производственной программы. Окончательный выбор одного варианта из двух рассмотренных, будет зависеть от минимума целевой функции В случае бригадной формы организации труда на участке, значение ТСi будет максимальным, поскольку труд операторов более интенсивный, чем в варианте разделения участка на индивидуальные зоны обслуживания. Однако численность операторов при бригадной форме труда будет минимальной. При разделении участка на зоны обслуживания ситуация изменяется - ТСi будет минимальной, а численность операторов - наибольшей. Тот вариант разделения труда на участке будет оптимальным, который обеспечит минимальные затраты на оплату труда рабочих, обслуживающих станки. ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ З а д а н и е 1. Рассчитать продолжительность последовательного, параллельно-последовательного и параллельного производственного циклов. Определить коэффициенты параллельности для двух последних циклов. Исходные данные: t1 = 1, t2 = 4, t3 = 2, t4 = 5 мин/ед.; партия деталей - 20 ед., передаточная партия 5 ед. Среднее время межоперационного перерыва 5 мин. З а д а н и е 2. Имеется параллельно-последовательный производственный процесс со следующими данными: t1 = 1, t2 = 4, t3 = 2, t4 = 5 мин/ед.; партия деталей - 20 ед., передаточная партия 5 ед. Среднее время межоперационного перерыва 5 мин. Целесообразно ли увеличить норму времени на третьей операции с 2 до 4 мин/ед., если да, то какое правило сокращения продолжительности параллельно-последовательного цикла в этом случае используется? З а д а н и е 3. Обосновать графическим способом (построить цикл многостаночного обслуживания) приемлемость нормы обслуживания трех станков-полуавтоматов одним рабочим. Исходные данные, мин: № станка Тс Тз Тс + Тз Станок 1 8 4 12 Станок 2 7 4 11 Станок 3 8 2 10 Необходимое число действующих станков 1,5 для цели выполнения рабочим производственного задания. Нормативный коэффициент занятости рабочего-многостаночника 0,88. РЕШЕНИЯ ТРЕНИРОВОЧНЫХ ЗАДАНИЙ Р е ш е н и е з а д а н и я 1. Определяем продолжительность последовательного производственного цикла по (2.1) Трр = 20 (1 + 4 + 2 + 5) + 4.5 = 260 мин. Рассчитываем продолжительность параллельно-последовательного производственного цикла по Трр = 20 (1 + 4 + 2 + 5) - (20 - 5) (1 + 2 + 2) + 4.5 = 185 мин. Определяем продолжительность параллельного производственного цикла по (2.3): Т pr = 5 (1 + 4 + 2 + 5) + (20 - 5) 5 + 4.5 = 155 мин. Рассчитываем коэффициент параллельности параллельно-последовательного цикла: а = Tp / T = 260 / 185 = 1,41; параллельного цикла: а = Tp / T = 260 / 155 = 1,68. Решение задания 2. Третье правило разд. 2.3 звучит следующим образом: если нормы времени технологических операций монотонно возрастают или убывают по ходу производственного процесса, то продолжительность параллельно-последовательного цикла будет минимальной. В первом случае, когда t 1 = 1, t2 = 4, t 3 = 2, t 4 = 5 мин/ед. нормы времени по ходу технологического процесса изменяются скачкообразно. Во втором случае t 1 = 1, t2 = 4, t 3 = 4, t 4 = 5 мин/ед. нормы времени по ходу процесса не убывают, т.е. изменяются монотонно. Следовательно, продолжительность параллельно-последовательного цикла во втором случае будет меньше, хотя норма времени на третьей операции увеличилась на 2 мин. Убедимся в этом, сделав соответствующие расчеты. Рассчитываем продолжительность параллельно-последовательного производственного цикла для первого случая по (2.2) Трр = 20 (1 + 4 + 2 + 5) - (20 - 5) (1 + 2 + 2) + 4.5 = 185 мин. Рассчитываем продолжительность параллельно-последовательного производственного цикла для второго случая по той же формуле Трр = 20 (1 + 4 + 4 + 5) - (20 - 5) (1 + 4 + 4) + 4.5 = 165 мин. Производственный цикл сократился на 20 мин за счет ликвидации «узкого места» на третьей операции. Р е ш е н и е з а д а н и я 3. Построение цикла многостаночного обслуживания следует начинать со станка, имеющего максимальное значение Тс + Т з, т.е. с первого. График цикла вычерчивается в определенном масштабе, например, 0,5 см - 1 мин. Для первого станка в выбранном масштабе сначала изображается время Тз, а за тем Тс. В той же последовательности осуществляется построение операционных циклов и для станков 2 и 3 (рис. 2.12). Для того, чтобы выявить время простоя станков и рабочего, необходимо построить смежный цикл многостаночного обслуживания, примыкающий справа к первому циклу. Затем подсчитать суммарное время простоя станков и рабочего в течение второго цикла обслуживания станков посредством измерения на графике соответствующих отрезков времени. В нашем примере: суммарное время простоя станков? T пср =3 мин; рабочего T прр =2 мин. Количество станков, простаивающих в ожидании обслуживания: L = (? T пср T мц = 3 / 12 = 0,25 станка. Количество станков, находящихся в состоянии обслуживания рабочим: H = (?Tз)T мц. Эта величина числено равна коэффициенту занятости рабочего Kзц = (12 - 2) / 12 = 0,83, или H = (4 + 4 + 2) / 12 = 0,83 станка. Количество действующих станков определяем по формуле: D = (?Tс)T мц = (8 + 7 + 8) / 12 = 1,92 станка. Поскольку расчеты сделаны верно, то выполняется равенство: N = D + H + L = 1,92 + 0,83 + 0,25 = 3 станка, находящиеся на рабочем месте многостаночника. Норму обслуживания N проверим на соответствие норме выработки: D ? D н и критерию нормальной занятости рабочего Kзц Kнзц. Имеем: 1,92 > 1,5 и 0,83 < 0,88, соответственно. Необходимые условия выполняются, поэтому норма обслуживания N = 3 станка на одного рабочего принимается и внедряется в производство. ТЕСТ 1 Какой вид движения предметов труда имеет минимальную продолжительность во времени: а) последовательный; б) параллельно-последовательный; в) параллельный; г) последовательно-параллельный. 2 С уменьшением передаточной партии продолжительность параллельно-последовательного и параллельного циклов а) уменьшается; б) увеличивается; в) остается неизменной; г) нет определенной зависимости. 3 На какую величину продолжительность производственного цикла больше продолжительности технологического цикла: а) на величину простоев оборудования; б) на величину простоев рабочих; в) на величину межоперационных перерывов; г) на величину продолжительности выходных и праздничных дней. 4 Продолжительность параллельно-последовательного и параллельного цикла будет одинаковой в случае: а) циклического изменения продолжительности норм времени операций по ходу технологического процесса; б) неравномерного изменения продолжительности норм времени операций по ходу технологического процесса; в) монотонного изменения продолжительности норм времени операций по ходу технологического процесса; г) неупорядоченного изменения продолжительности норм времени операций по ходу технологического процесса. 5 Детали требуется изготовить на одном станке. Для того, чтобы суммарное время пролеживания деталей у станка было минимальным необходимо: а) запускать их в обработку в порядке возрастания норм времени на изготовление деталей; б) запускать их в обработку в порядке убывания норм времени на изготовление деталей; в) чередовать запуск детали с минимальной нормой времени на обработку, с деталью, имеющей максимальное значение нормы времени; г) установить такую очередность запуска, чтобы вначале нормы времени возрастали, а затем убывали. 6 Основной недостаток параллельного производственного цикла в том, что: а) на всех операциях, кроме главной, наблюдаются простои станков и рабочих; б) он самый продолжительный во времени; в) он самый сложный в смысле организации; г) он самый трудоемкий из всех. 7 При многостаночном обслуживании в норму занятости рабочего на одном станке включают: а) вспомогательное время, перекрываемое и неперекрываемое работой станка; время активного наблюдения; время организационного обслуживания станка; б) вспомогательное время, перекрываемое и неперекрываемое работой станка; время активного наблюдения; время перехода к другому станку; в) вспомогательное время, неперекрываемое работой станка; время организационного обслуживания станка; время переналадки станка; г) вспомогательное время; время активного наблюдения; время переналадки станка; время на отдых и личные надобности. 8 При нециклическом многостаночном обслуживании: а) рабочий обходит станки по одному и тому же маршруту, обслуживая их по мере необходимости; б) на каждом станке значения свободного машинного времени и времени занятости рабочего на одном станке имеют неизменную, стабильную величину; в) свободное машинное время и время занятости рабочего на каждом станке подвержены большим колебаниям и имеют неопределенное значение. 9 Рабочему-многостаночнику следует подбирать для обслуживания станки, имеющие: а) существенно различное значение времени занятости рабочего на одном станке и свободного машинного времени; б) примерно одинаковое значение суммы свободного машинного времени и времени занятости рабочего на одном станке; в) возрастающее значение свободного машинного времени; г) убывающее значение свободного машинного времени. 10 В каком случае рабочему-многостаночнику потребуется подменный рабочий при обслуживании станков-дублеров: а) когда значения свободного машинного времени и времени занятости рабочего на одном станке не равны и не кратны друг другу; б) когда значения свободного машинного времени и времени занятости рабочего на одном станке максимально отличаются друг от друга; в) когда значения свободного машинного времени и времени занятости рабочего на одном станке равны или кратны друг другу; г) когда свободное машинное время существенно меньше времени занятости рабочего на одном станке. 3 ПОТОЧНЫЕ ФОРМЫ ОРГАНИЗАЦИИ ПРОИЗВОДСТВА 3.1 ОБЩАЯ КЛАССИФИКАЦИЯ ПОТОЧНЫХ ЛИНИЙ Поточное производство является высокоэффективным методом организации производственного процесса. В условиях потока производственный процесс осуществляется в максимальном соответствии с принципами его рациональной организации - пропорциональности, ритмичности и прямоточности. Для поточного производства характерны следующие основные признаки: 1) рабочие места располагаются по ходу технологического процесса; 2) технологический процесс изготовления изделия разбивается на операции и на каждом рабочем месте выполняется одна - три родственные операции; 3) предметы передаются с операции на операцию поштучно или небольшими транспортными партиями в соответствии с заданным тактом работы поточной линии, благодаря чему достигается высокая производительность линии. Впервые поточное производство было организовано Г. Фордом в начале XX в. при изготовлении автомобилей. После Октябрьской революции поточные методы получили широкое распространение в промышленности. В годы Великой Отечественной войны они сыграли огромную роль в бесперебойном снабжении фронта боеприпасами и военной техникой. В настоящее время поточные методы распространены в пищевой, автомобильной, электронной и других отраслях промышленности. Основным звеном поточного производства является поточная линия. Упрощенная классификация поточных линий (ПЛ) приведена на рис. 3.1. Однопредметной называется ПЛ, на которой обрабатывается или собирается предмет одного типоразмера в течение длительного периода времени. Однопредметные линии применяются при устойчивом выпуске изделий в больших количествах, т.е. в массовом производстве. Многопредметной называется ПЛ, за которой закреплено изготовление нескольких типоразмеров предметов, сходных по конструкции и технологии обработки или сборки. Такие линии характерны для серийного производства, когда объем выпуска предметов одного типоразмера является недостаточным для эффективной загрузки рабочих мест на линии. Непрерывно-поточной является линия, на которой обрабатываемые или собираемые предметы перемещаются по всем операциям линии непрерывно, т.е. без межоперационного простоя. Условием непрерывной работы ПЛ является равная производительность на всех операциях линии. Для создания такого условия необходимо, чтобы продолжительность каждой операции на линии была равна или кратна единому такту работы линии. Прямоточной или прерывной, называется ПЛ, операции которой не равны и не кратны единому такту работы линии и, следовательно, не могут быть выравнены по производительности. Между операциями образуются оборотные заделы (запасы) обрабатываемых предметов, вследствие чего непрерывность процесса производства нарушается. Прямоточные линии применяются при обработке трудоемких деталей на разнотипном оборудовании, когда нормы времени операций невозможно синхронизировать. Эти ПЛ относят к неконвейерному типу, т.е. в этом случае не используют транспортные средства непрерывного действия с механическим приводом, называемыми конвейерами. На прямоточных линиях используют разнообразные транспортные средства - краны, элетротележки, автопогрузчики и т.д. Рабочий конвейер - на такой ПЛ - все рабочие места связаны конвейером. В данном случае конвейер служит еще и местом выполнения операций, которые осуществляются на его несущей части. Типичным примером таких ПЛ являются сборочные конвейеры. Распределительный конвейер - это ПЛ на которой конвейер служит средством доставки предметов к рабочим местам или оборудованию, расположенному вдоль конвейера. Предметы снимаются с конвейера, обрабатываются на оборудовании, а затем возвращаются на него. В зависимости от характера перемещения различают конвейеры с непрерывным и пульсирующим движением. На конвейере с непрерывным движением несущая его часть движется непрерывно с установленной скоростью. На конвейере с пульсирующим движением во время обработки (сборки) предметов несущая часть конвейера находится в неподвижном состоянии в течение времени равном такту линии, а затем конвейер приводится в движение и предмет перемещается в следующую зону операции. Пульсирующее и непрерывное движение характерно как для рабочего, так и распределительного конвейеров. На переменно-поточной линии различные предметы обрабатываются или собираются последовательно чередующимися партиями. После обработки или сборки партии одних предметов проводится переналадка оборудования и запускается в производство следующая партия. На групповой ПЛ обрабатывается или собирается группа родственных в технологическом отношении предметов без переналадки оборудования. Для этого каждое рабочее место должно быть оснащено групповыми приспособлениями, необходимыми для обработки изделий, закрепленных за линией. 3.2 ОСОБЕННОСТИ ОРГАНИЗАЦИИ НЕПРЕРЫВНО-ПОТОЧНЫХ ЛИНИЙ Основные параметры непрерывно-поточных линий: такт (r), количество рабочих мест на операции (ci), коэффициент загрузки рабочих мест (Kзi). Эти параметры рассчитываются в следующей последовательности. Сначала рассчитывается такт поточной линии r = Fэф /N , (3.1) где Fэф - эффективный фонд времени работы линии за определенный период (месяц, сутки, смену); N - производственная программа за этот же период. Такт показывает тот интервал времени, через который на конвейер запускается очередной предмет, либо выпускается с конвейера уже изготовленное или собранное изделие. Такт конвейера принято измерять в минутах. Далее определяется расчетное количество рабочих мест на каждой операции cрi =ti /r , (3.2) где ti - продолжительность i-й операции, мин. Величина cpi округляется до целого числа и устанавливается принятое число рабочих мест ci. После чего рассчитывается средний коэффициент загрузки рабочих мест на i-й операции по формуле Kзi = (срi /ср )100 % . При проектировании конвейеров перегрузка рабочих мест не должна превышать 10 - 12 %, т.е. Kзi ? 112 %. Такая перегрузка рабочих снимается в процессе отладки поточной линии, за счет совершенствования навыков и опыта работы на конвейере. При большей перегрузке рабочих, организация непрерывно-поточной линии невозможна и следует рассмотреть вопрос о проектировании иной ПЛ - прямоточной, на которой не требуется осуществлять точной синхронизации времени выполнения операций. Для непрерывно движущегося конвейера рассчитывается дополнительный параметр - скорость движения конвейера v = l / r, где l - расстояние между осями двух смежных изделий, находящихся на конвейере, называемое шагом конвейера, м. Скорость движения конвейера не должна быть слишком большой, ее величина колеблется в пределах 0,1 - 4,0 м/мин. Рабочий конвейер. Рассмотрим особенности организации рабочего конвейера на примере. Предположим, что изделие должно проходить сборку на трех операциях со следующими нормами времени t1 = 1, t2 = t3 = 2 мин. Такт поточной лини r = 1 мин; шаг конвейера l = 2 м. Нормы времени на операциях по продолжительности либо равны, либо кратны такту поточной линии. Следовательно, расчетное число рабочих мест (cpi) будет целым числом и коэффициент загрузки рабочих мест на каждой операции Kзi = 1,0. Очевидно, что принятое число рабочих мест на каждой операции будет следующим: c1 = 1, c2 = 3 И c3 = 2. Длина рабочей зоны i-й операции рассчитывается по формуле: Длина зоны первой операции - L1 = 2 ? 1 = 2 м; второй - L2 = 2 ? 3 = 6 м; третьей - L3 = 2 ? 2 = 4 м. Изобразим эти зоны и рабочий конвейер на схеме (рис. 3.2). Предположим, что конвейер - пульсирующий, т.е. в течение времени r = 1 мин он неподвижен, а затем быстро перемещается на расстояние l = 2 м. Поскольку на первой операции норма времени t1 = 1 мин, то рабочему 1.1 будет вполне достаточно времени на выполнение этой операции. Рабочий 2.1 будет перемещаться вдоль второй рабочей зоны за тем изделием, которое лежит на конвейере. Очевидно, что рабочий 2.1 сделает во второй зоне три остановки по 1 мин каждая, т.е. он также сможет осуществить свою сборочную операцию продолжительностью t2 = 3. Дойдя до конца зоны второй операции, рабочий возвращается в ее начало. Рабочий 2.2 идет после рабочего 2.3 и перед рабочим 2.1. Каждый из них достигнув конца своей зоны, возвращается в ее начало, встречая новое изделие, входящее во вторую зону из зоны первой операции. Аналогичным образом осуществляют переходы и рабочие 3.1 и 3.2 в третьей зоне операции. Если конвейер движется непрерывно, то его скорость должна быть равной v = l / r = 2 / 1 = 2 м/мин. Следовательно, первую зону операции длиной 2 м изделие будет проходить за 1 мин; вторую зону длиной 6 м - за 3 мин, а третью соответственно - за 2 мин. Каждый рабочий будет в течение определенного времени сопровождать изделие в своей зоне, одновременно осуществляя необходимую сборочную операцию. Общая длина конвейера рассчитывается по формуле: На операциях с нестабильным временем их выполнения и возможными задержками создается резервная зона, на длину которой увеличивается протяженность зоны Li . Длина резервной зоны должна быть либо равной, либо кратной шагу конвейера, благодаря чему время выполнения нестабильной операции может быть больше установленной нормы. Распределительный конвейер. Воспользуемся исходными данными предыдущего примера для иллюстрации работы ПЛ со снятием изделий с конвейера. Схема распределительного конвейера с теми же параметрами, что и у рабочего конвейера, рассмотренного выше, приведена на рис. 3.3. Если на конвейере на отдельных операциях имеется по несколько рабочих мест, то необходимо обеспечить правильное чередование в обработке изделий на каждом рабочем месте. Для этой цели делается разметка конвейера на его ленту краской наносят числа, которые образуют период П распределительного конвейера. Период распределительного конвейера равен наименьшему кратному из числа рабочих мест на каждой операции. В нашем примере П = 6. Действительно, шесть цифр - это самое малое число, которое без остатка может быть распределено между рабочими местами на любой операции ПЛ. За рабочим 1.1 следует закрепить шесть цифр, за каждым из рабочих 2.1, 2.2, 2.3 - по две цифры и за рабочими 3.1, 3.2 по три цифры (по три разметочных знака). Разметочные знаки периода необходимо распределять Распределительный конвейер может быть как пульсирующим, так и с непрерывным движением. В любом случае, каждое следующее изделие подходит к рабочему через время, равное такту ПЛ. Если рабочий будет обрабатывать каждое изделие, которое подает ему конвейер, то норма времени у такого рабочего должна быть равна такту ПЛ, если рабочий будет брать с конвейера каждое второе изделие, то его норма времени должна быть равна двум тактам ПЛ и т.д. В табл. 3.1. показано, каким образом следует закреплять разметочные знаки периода распределительного конвейера за рабочими, чтобы время обработки детали на каждом рабочем месте соответствовало бы установленной норме. Например, за рабочим 2.1 закреплены знаки первый и четвертый. Когда с рабочим поравняется первый разметочный знак, то к этому моменту должна закончиться обработка предыдущего изделия. Рабочий должен положить на первый разметочный знак обработанное изделие и затем с этого же знака взять очередное изделие, т.е. заменить необработанное изделие на обработанное. Четвертый разметочный знак подойдет к рабочему через интервал времени, равный трем тактам ПЛ, в нашем примере это - 3 мин, что числено равно t2 = 3 мин, которые отводятся рабочему на выполнение второй операции. Каждый рабочий на третьей операции заменяет необработанное изделие на обработанное через два такта ПЛ, т.е. через 2 мин, что также соответствует t3 = 2 мин. Период конвейера на общей длине ленты может повторяться несколько раз, но обязательно целое число раз. Удобны для работы следующие периоды 6, 12, 24 и 30. При больших периодах вводится дифференцированная разметка, при которой на конвейер наносится двойной комплект знаков, например окраска полей и нумерация. При этом часть рабочих пользуется одним комплектом знаков, а другая часть - другим. 3.3 ПРИМЕР ЗАКРЕПЛЕНИЯ НОМЕРОВ ПЕРИОДА РАСПРЕДЕЛИТЕЛЬНОГО КОНВЕЙЕРА ЗА РАБОЧИМИ Номер рабочего на ПЛ Номера периода 1.1 1, 2, 3, 4, 5, 6 2.1 1, 4 2.2 2, 5 2.3 3, 6 3.1 1, 3, 5 3.2 2, 4, 6 Общая длина распределительного конвейера определяется из условий расположения оборудования и конструктивных особенностей транспортера. Станки могут быть расположены с одной или с двух сторон конвейера в линейном или шахматном порядке. На рис. 3.3 показано шахматное двустороннее расположение станков на поточной линии. 3.4 ОРГАНИЗАЦИЯ ПРЯМОТОЧНЫХ ПОТОЧНЫХ ЛИНИЙ Прямоточные поточные линии применяются в тех случаях, когда при проектировании производственного процесса не удается достичь синхронности выполнения операций, поскольку их продолжительность не равна и не кратна такту ПЛ. Этапы расчета основных параметров прямоточной ПЛ следующие. А) Определяется такт работы ПЛ по (3.1). Затем рассчитывается расчетное количество рабочих мест на каждой операции по (3.2). Расчетное число рабочих мест будет существенно отличаться от целого числа, так как норма времени на данной операции, как уже говорилось, не равна и не кратна такту поточной линии. Поэтому необходимо определить индивидуальные коэффициенты загрузки рабочих мест по следующему правилу. Для всех рабочих мест на операции, кроме последнего, коэффициент загрузки Kзi принимается равным 100 %. Загрузка последнего рабочего места рассчитывается по остаточному принципу. Например, расчетное количество рабочих мест получилось равным 2,4 следовательно, первые два рабочих места будут загружены на 100 %, а последнее, третье - на 40 %. Если бы расчетное число рабочих мест было бы равно 2,1, то в этом случае можно образовать только два рабочих места на операции, поскольку перегрузка рабочих величиной 5 % (K з i = 2,1 / 2 ? 100 % = 105 %) может быть снята в процессе отладки поточной линии за счет совершенствования навыков и опыта работы на ПЛ и, в конечном итоге, она будет на этих рабочих местах по 100 %. Перегрузка в 40 % требует организации дополнительного рабочего места именно с такой неполной загрузкой. Особенность прямоточной поточной линии в том, что станки с неполной загрузкой, расположенные на различных операциях ПЛ, передаются в обслуживание одному рабочему-многостаночнику так, чтобы его занятость была близка к 100 %. Это позволяет экономить на рабочей силе. Тип поточной линии в процессе проектирования определяется по предельной перегрузке рабочих мест, приблизительно равной 10 - 12 %. Если перегрузка рабочих мест не более 12 %, на всех рабочих местах ПЛ, то можно организовать конвейер; если перегрузка достигает большей величины, то необходимо проектировать рабочие места с неполной загрузкой, вводить многостаночное обслуживание, а это уже иной тип поточной линии - прямоточная ПЛ. Б) Выбирается период комплектования заделов на ПЛ. Период комплектования иначе называется ритмом работы R поточной линии. Он должен быть кратен продолжительности смены, например 60, 120, 240, 480 мин, что делается для целей удобства планирования заделов. В течение промежутка времени, равному R, на всех операциях поточной линии формируется выработка заданной величины, а между операциями, вследствие различной производительности оборудования, образуются запасы полуфабрикатов, называемые межоперационными оборотными заделами. На этом этапе строится план-график загрузки оборудования и рабочих на ПЛ. От вида этого графика будет зависеть величина межоперационных оборотных заделов и, в конечном итоге, объем незавершенного производства на ПЛ. На плане-графике показывают моменты переходов рабочих-многостаночников от станка к станку. Характерной особенностью прямоточных поточных линий является то, что на них количество рабочих меньше количества станков из-за наличия многостаночного обслуживания. В) Рассчитывается изменение величины межоперационного оборотного задела по формуле: Z=(Tci)/ti-(Tci +1)/ti+1 , (3.7) где T - период времени, в течение которого на смежных операциях количество действующих станков остается неизменным; ti и ti +1 - нормы времени на смежных операциях; ci и ci +1 - число единиц оборудования, действующих на смежных операциях в течение периода времени T. Величина задела между смежными операциями должна рассчитываться для каждого значения T, т.е. для каждого случая изменения его величины на протяжении периода комплектования. На этом этапе строятся графики межоперационных оборотных заделов на ПЛ. Проиллюстрируем все этапы расчета параметров поточной линии на примере. Пример. На участке обрабатывается 184 детали в сутки. Участок работает в две смены по 8 ч. Нормы времени на обработку одной детали: t 1 = 2,9, t2 = 2,3, t 3 = 6,2, t 4 = 4,21 мин. Рассчитать количество оборудования на операциях и численность рабочих на прямоточной линии. Составить план-график работы оборудования и рабочих, рассчитать эпюры оборотных заделов. Решение. А) Определим такт работы прямоточной линии по (3.1): r = 480 ? 2 / 184 = 5,2 мин на одну деталь. Здесь 480 - продолжительность рабочей смены в мин. Далее рассчитаем количество рабочих мест (станков) на ПЛ по (3.2) и их индивидуальную загрузку. Все расчеты сведены в таблицу. Определим численность рабочих на ПЛ исходя из трудоемкости производственной программы. Сменная программа выпуска 184 / 2 = 92 ед. в смену. Трудоемкость сменного задания: 92 (2,9 + 2,3 + 6,2 + 4,21) = 1436 мин. Численность рабочих 1436 / 480 = 3 человека. Итак, пять станков должно обслуживать три рабочих. Б) Выбираем период комплектования задела на ПЛ равным 240 мин, или 0,5 от продолжительности рабочей смены. План-график загрузки оборудования и рабочих на ПЛ в течение периода комплектования R = 240 мин показан на рис. 3.4. Если время выполнения операции разделить на норму времени на этой операции, то получим количество деталей, произведенных за период комплектования задела: * на первой операции 134 / 2,9 = 46 ед.; * на второй операции 106 / 2,3 = 46 ед.; * на третьей операции 286 / 6,2 = 46 ед.; * на четвертой операции 194 / 4,21 = 46 ед. Таким образом, в течение рабочей смены будет изготовлено 46 ? 2 = 96 деталей, что и требуется по плану производства. Из рис. 3.4 видно, что рабочий 1 обслуживает станки 1.1 и 2.1; рабочий 2 работает на одном станке 3.1; рабочий 3 занят на станках 3.2 и 4.1. Таким образом, рабочие-многостаночники 1 и 3 за период комплектования задела проделывают по одному переходу от станка к станку, а за смену - по два перехода. В) На рис. 3.5 изображены графики межоперационных оборотных заделов. Разберем процесс расчета и построения этих графиков, иначе называемых эпюрами. Рассчитаем эпюру задела между первой и второй операциями в два приема. Выбираем период времени, в течение которого на смежных операциях состояния станков остаются неизменными: на первой операции - это один работающий станок, на второй операции - это один простаивающий станок. Очевидно, что в (3.7) T = 0,56 ? 240 мин: AZ1-2 = (Tc 1) / t 1 - ( Tc 2) / t 2 = (0,56 * 240 * 1) / 2,9 - (0,56 * 240 * 0) / 2,3 = 46 ед. На эпюре задел растет с нулевого значения до 46 ед. В течение следующего периода времени (T = 0,44 * 240 мин) на первой операции станок бездействует, а на второй функционирует AZ'1-2 = (Tc 1) / t 1 - (Tc2) / t2 = (0,44 * 240 * 0) / 2,9 - (0,44 * 240 * 1) / 2,3 = -46 ед. На эпюре задел убывает до нулевого значения. Задел между второй и третьей операциями рассчитывается три приема: изменение задела в течение 0,56 * 240 мин; в течение (0,44 - 0,19) 240 = 0,25 * 240 мин и 0,19 * 240 мин: AZ2-3 = (Tc2) / t2 - (Tc3) / t 3 = (0,56 * 240 * 0) / 2,3 - (0,56 * 240 * 1) / 6,2 = -22 ед.; AZ'2-3 = (Tc2) / t2 - (Tc3) / t 3 = (0,25 * 240 * 1) / 2,3 - (0,25 * 240 * 1) / 6,2 = 17 ед.; AZ"2-3 = (Tc2) / t2 - (Tc 3) / t 3 = (0,19 * 240 * 1) / 2,3 - (0,19 * 240 * 2) / 6,2 = 5 ед. В течение первой части периода комплектования (0,56 * 240 мин.) на второй операции станок простаивает, а на третьей работает один станок; во второй части периода на второй и на третьей операциях действует по одному станку; в третьей части периода на второй операции работает два станка, а на третьей операции - один станок. По (3.7) рассчитывается изменение оборотного задела, поэтому отрицательное значение AZ = -22 ед. в начале периода комплектования задела означает, что в начальный момент времени не хватает именно такого запаса деталей для начала третьей операции. Эпюра задела между второй и третьей операциями формируется таким образом: на начало периода комплектования к третьему станку подают 22 ед. деталей, прошедших обработку на втором станке; в течение первой части периода этот задел уменьшается до нуля (22 ед. первоначального запаса минус 22 ед. изготовленных на третьем станке); в течение второй части периода задел увеличивается до 17 ед.; в течение третьего периода к 17 ед. запаса добавляется еще 5 ед. и таким образом к концу периода комплектования задел становится равным 17 + 5 = 22 ед. Если эпюра построена правильно, то величина задела на начало и конец периода комплектования должны совпадать (см. рис. 3.5). Между третьей и четвертой операциями расчет изменения задела и построение эпюры осуществляется аналогично, но с той разницей, что выделяют две части периода комплектования, в течение которых станки находятся в неизменных состояниях. AZ3-4 = (Tc 3) / t 3 - (Tc4) / t 4 = (0,81 * 240 * 1) / 6,2 - (0,81 * 240 * 1) / 4,21 = -15 ед.; AZ'3-4 = (Tc3) / t 3 - (Tc 4) / t 4 = (0,19 * 240 * 2) / 6,2 - (0,19 * 240 * 0) / 4,21 = 15 ед. Из рис. 3.5 видно, что если в начальный момент времени к четвертому станку поместить 15 ед. деталей, то к окончанию периода комплектования этот задел самовоспроизведется и у четвертого станка по-прежнему будет 15 ед. деталей, прошедших обработку на третьем станке. Величина оборотного задела, сложившаяся к концу периода его комплектования, называется переходящим заделом Zпер. Переходящий задел должен быть минимальным. В данном примере суммарный переходящий задел - 37 ед., следовательно, к концу рабочей смены эти полуфабрикаты нужно либо передать бригаде рабочих, работающих во вторую смену, либо обеспечить их хранение до следующего дня. Чем меньше переходящий задел, тем меньше затраты на эти вспомогательные операции. Суммарный оборотный задел на поточной линии определяют сложением количества деталей, находящихся в заделе между операциями на данный момент времени. Например, к моменту времени 0,56 * 240 = 134 мин между первой и второй операциями в заделе находится 46 ед., между второй и третьей операциями - 0 ед., между третьей и четвертой - 5 ед. Суммарная величина задела: 46 + 0 + 5 = 51 ед. (см. рис. 3.5). Средняя величина задела, или, иначе, средняя величина незавершенного производства на поточной линии - Zср = 44 ед. Характеристики прямоточной поточной линии, влияющие на эффективность ее работы. 1) Существует оптимальное значение периода комплектования задела на поточной линии. На рис. 3.6 показаны два варианта организации производства на поточной линии, отличающиеся только величиной R. Из рисунка видно, что чем больше период комплектования задела R, тем больше задел и тем меньшее количество переходов от станка к станку делает рабочий в течение смены. То есть при значительных периодах комплектования ухудшается оборачиваемость запасов, но уменьшаются потери рабочего времени у рабочего, осуществляющего переходы от станка к станку (рис. 3.6, а). При небольших значениях периода комплектования с одной стороны величина задела уменьшается и улучшаются показатели оборачиваемости запасов, а с другой - увеличивается количество переходов рабочего и, как следствие, возрастают потери объемов производства (рис. 3.6, б). Сопоставляя достоинства и недостатки большого и малого периодов комплектования, можно определить его оптимальную величину.
Страницы: 1, 2, 3, 4
|