Рефераты
 

Підвищення ефективності магістральних газопроводів на пізній стадії експлуатац

результаті модернізації камери згоряння досягається: підвищення надійності експлуатації ГПА ГТК-10 за рахунок високої ефективності роботи модернізованої камери згоряння в широкому діапазоні режимів експлуатації ГПА та розширення запасу по ефективній потужності агрегату; підвищення коефіцієнта надлишку повітря у камері згоряння ГПА (приблизно на 10% при однаковій ефективній потужності); утворення однорідної термічної структури потоку та підвищення рівномірності поля температур газів перед сопловим апаратом ТВТ; зниження рівня максимумів температур перед турбіною високого тиску при однозначній ефективній потужності (з оптимізованим і штатним варіантом камери згоряння).

Важливим напрямком підвищення ефективності експлуатації компресорних станцій є використання вторинних енергоресурсів. У ВАТ “Укргазпроект” за участю автора розроблена схема (рис. 4) для одержання вуглекислоти на КС з електроприводним ГПА і газотурбінними агрегатами вуглекислотну установку на імпортному устаткуванні, що використовує побічний продукт - вуглекислий газ, який міститься в продуктах згоряння працюючих газових опалювальних котелень на КС із газотурбінними ГПА.

Рисунок 4 - Принципова технологічна схема одержання вуглекислоти з використанням вторинних ресурсів КС газопроводів: 1 - газотурбінний газоперекачувальний агрегат; 2 - випускний тракт агрегату; 3 - паровий котел-утилізатор; 4, 11 - засувка з електроприводом; 5 - димова труба; 6 - димосос; 7 - вуглекислотна установка; 8 - шибер; 9 - димохід; 10 - котельня; 12 - вентилятор; 13 - блок управління; 14 - газоаналізатор; 15 - відвід; 16 - парова турбіна з електрогенератором; 17 - конденсатор; 18 - конденсатний насос; 19 - блок водопідготовки

Димові гази газових котелень, як сировина для одержання рідкої вуглекислоти, повинні відповідати певним вимогам, що дозволяють вести технологічний процес з максимальною ефективністю. Вміст СО2 в них повинен бути максимальним (не менш ніж 9,0%) при мінімальному вмісті кисню.

Кисень є окислювачем абсорбенту СО2 з димових газів і суттєво впливає на його витрату. Абсорбентом є розчин моноетаноламіну (МЕА). Тому процес спалювання природного газу для одержання димових газів повинен здійснюватись з мінімально-можливим коефіцієнтом надлишку повітря.

Для спільних цілей теплофікації КС і одержання вуглекислоти визначений оптимальний коефіцієнт надлишку повітря .

Для вибору оптимальних параметрів газової опалювальної котельні, як генератора вуглекислого газу, на ПЕОМ були проведені розрахунки термодинамічно рівноважних складів продуктів згоряння природного газу різних родовищ при коефіцієнтах надлишку повітря в інтервалі 0,81,2.

Аналіз результатів розрахунку, які проведені в Інституті газу НАНУ і ВАТ “Укргазпроект”, показує, що оптимальною величиною при використанні продуктів згоряння газу для одержання вуглекислоти є 0,9. При цьому режимі горіння відсутні залишковий кисень, оксиди азоту, а вміст СО2 у продуктах згоряння максимальний. Для продуктів згоряння природного газу різних, вибраних нами, родовищ величини СО2 складають 9,469,71% об.

Згідно з усередненими паспортними даними теплова потужність газових опалювальних котелень КС з різними типами ГПА складає близько 4,2 МВт, а витрата природного газу - 500 м3/год. При цьому витрата повітря при 0,9 для газу різних родовищ у середньому приблизно дорівнює 4150 м3/год. При спалюванні такої кількості газів з продуктів згоряння можна одержати 500 кг/год (12 т/добу) рідкої вуглекислоти.

Шостий розділ дисертації присвячений розробці науково-технічних заходів та засобів підвищення акустичної ефективності компресорних станцій магістральних газопроводів.

Інтенсивним джерелом шуму на КС є вихлопні шахти газоперекачувальних агрегатів. Як правило, для зниження рівня шуму вихлопу ГПА із судновим та авіаційним приводами типу ГПА-Ц-6,3, ГПА-Ц-16, ГПА-10 й ін. застосовують одно - або двоступінчасті глушники, які представляють собою набір плоских металевих перфорованих пластин, заповнених базальтовим волокном і встановлених паралельно до потоку вихлопних газів ГПА. Ефект глушіння шуму полягає в поглинанні порами звуковбирного волокна звукової енергії, що витрачається на подолання тертя часток повітря і інерції кістяка звуковбирного матеріалу. Однак, такі глушники мають низьку акустичну ефективність (близько 5 дБ) і експлуатаційну надійність. Під впливом швидкісного потоку гарячих (понад 350°С) вихлопних газів ГПА відбувається руйнування поверхонь перфорованих пластин і викид металу та звукоізоляційного матеріалу в атмосферу.

Разом з тим, ці задачі можуть бути більш ефективно вирішені встановленням у вихлопних шахтах ГПА шумоглушників-утилізаторів (ШУТ), які забезпечують зниження шуму вихлопу агрегатів з одночасною утилізацією теплоти їхніх вихлопних газів для підігріву води, повітря і інших теплоносіїв у системах теплопостачання КС. Такий шумоглушник-утилізатор (ШУТ) для ГТУ був запропонований інститутом “Укргазпроект” на рівні винаходу. Конструкція такого шумоглушника наведена на рис 5. Потік вихлопних газів надходить на вхід у шумоглушник-теплоутилізатор, а потім у простір між обтічниками, де відбувається дроблення потоку, його багаторазові звуження й розширення за рахунок прямокутних труб теплообмінників. При цьому відбувається відбиття звукових хвиль від прямокутних стінок і їхній вплив на осьовий потік вихлопних газів ГПА Водночас відбувається інтенсивне охолодження потоку газів циркулюючім в каналах теплообмінника охолоджувачем. Це приводить до додаткового зниження рівня шуму вихлопу завдяки відбиттю звукових хвиль і їхнього накладення на осьовий потік вихлопних газів через різницю імпедансів поблизу стінки теплообмінника і у потоці газів.

Рис. 5 - Шумоглушник-утилізатор для ГПА: 1 - корпус; 2 - впускний отвір; 3 - випускний отвір; 4 - обтічник; 5 - утилізаційний теплообмінник; 6 - підвідний повітряний колектор; 7 -відвідний повітряний колектор; 8 - звуковбирне волокно.

З погляду газової динаміки запропонований шумоглушник можна розглядати як трубопровід із системою місцевих опорів, що мають зверхність в утворенні сумарного протитиску постійному потоку відпрацьованих газів.

Аеродинамічний опір шумоглушника-утилізатора

(11)

де - сумарний коефіцієнт опору шумоглушника-утилізатора, приведений до вхідного перетину дифузора;

Qo і Fo - відповідно витрата вихлопних газів (м3/с) і площа вхідного перетину прямокутного дифузора, м2;

с - густина вихлопних газів, кг/м3.

Для розроблювальної конструкції ШУТ коефіцієнт опору з деякими допущеннями може бути наданий у вигляді

(12)

де Ашут- постійна, що характеризує конструктивні розміри ШУТ;

N - кількість касет-обтічників;

y - відстань між осями дифузора й касет, м;

Do - характерний розмір перетину прямокутного дифузора, м;

л - коефіцієнт опору прямокутної труби (л = 0,06);

Dr - гідравлічний діаметр прямокутного вхідного отвору ШУТ, м.

Акустична ефективність нової конструкції шумоглушника-утилізатора для ГПА визначається за методикою, розробленою в лабораторії охорони праці ТОВ „ВНІІгаз” за участю фахівців ВАТ „Укргазпроект”, в тому числі і автора, і Московського автомеханічного інституту. Вона являє собою суму

ДL= ДLp+ ДLa, дБ, (13)

де ДLp і ДLa - акустична ефективність відповідно до реактивної і абсорбційної частини ШУТ, дБ.

Розрахунок абсорбційної частини ШУТ зводиться до акустичного розрахунку пластинчастого глушника шуму.

Акустична ефективність реактивної частини ШУТ визначається для багатокамерного глушника за формулою:

дБ, (14)

де:

(15)

де m - ступінь розширення, рівна відношенню площі перетину камери Sк до площі поперечного перерізу трубопроводу;

k=2рf/c - хвильове число, м-1;

f - частота звуку, l/с;

с - швидкість звуку в потоці вихлопних газів, м/с;

lk - довжина камери, м;

lTP - довжина трубопроводу, м;

N - число камер.

Як критерій оптимальності при виборі акустичних характеристик прийнятий максимум акустичної ефективності глушника. При визначенні його енергетичних характеристик науково обґрунтовані вибір і прийнятий як критерій оптимальності мінімум питомих наведених витрат. Таким чином, при розробці шумоглушників-утилізаторів для ГПА вирішується двокритеріальне завдання оптимізації.

ВИСНОВКИ

Вирішено важливу науково-прикладну проблему підвищення ефективності магістральних газопроводів на пізній стадії експлуатації шляхом встановлення автором конкретизації закономірностей впливу на аварійність природних та техногенних факторів, методів та методик для визначення залишкового ресурсу лінійної частини трубопроводів та обладнання компресорних станцій, а також енергоекологічних безпечних засобів та методів.

Основні наукові та практичні результати, висновки і рекомендації роботи:

1. Запропонована, забезпечена кількісною інформацією, аналітичні залежності для визначення показника прояву природних та техногенних факторів на частоту відмов газопроводу в конкретному районі; для розрахунку локального значення інтенсивності аварій на окремій ділянці вітчизняних газопроводів проведено бальне оцінювання окремих факторів впливу; розроблена загальна схема послідовності вивчення відмов при експлуатації газопроводів, що складається з чотирьох етапів: на першому етапі виявляються основні потенційні небезпеки, на другому - проводиться аналіз і кількісна оцінка можливих наслідків, на третьому визначаються інтенсивність (частота) та ймовірність аварійних подій, а на четвертому етапі розраховуються збитки і втрати від окремих аварій та величина прогнозованого ризику..

2. На основі теоретичних та експериментальних досліджень удосконалено метод оцінки ймовірності руйнування магістральних газопроводів за допомогою індикаторів навантаженості на основі закономірностей кінетики втомного руйнування. Метод дає змогу прогнозувати залишковий ресурс та критичні деформації окремих ділянок газопроводів. Розроблено методику прогнозування залишкового ресурсу з урахуванням пульсацій тиску та ступеня пошкодження ділянки газопроводу. Проведено експериментальні дослідження моделей-“вирізок” з газопроводу діаметром 820 мм і товщиною стінки 8 мм (матеріал - сталь 19Г) без дефектів і з локальними механічними дефектами. Розраховано залишковий ресурс пошкодженої ділянки газопроводу, і відмічено, що за даних параметрів дефектів і навантаженості дефект не несе загрози руйнування, але, якщо врахувати відключення тиску в газопроводі (один раз на рік експлуатації), то залишковий ресурс значно зменшується і становить біля 18 років експлуатації.

3. Встановлено закономірності зміни технічного стану газоперекачувального агрегату в процесі експлуатації, який характеризується ефективним ККД, і на їх основі запропоновано методику визначення критичеих значень, що дозволяє визначити залишковий ресурс ГПА.

4. Вперше в результаті виконаних теоретичних та експериментальних досліджень вирішена науково-технічна задача, що стосується розробки основ теорії та практики підвищення ефективності та екологічної безпеки газоперекачувальних агрегатів з газотурбінним приводом шляхом впровадження модернізованих малотоксичних камер згорання на основі трубчатих пальників. Це дозволило отримати ефективність поєднання основних стадій робочого процесу у напрямку інтенсифікації сумішоутворення, стабілізації горіння і мінімізації емісії токсичних NOx та СО при високих енергетичних показниках; високі пускові властивості трубчастих модулів і всережимність їхньої ефективної роботи при різних надлишках повітря у камері згорання газоперекачувальних агрегатів.

5. На основі проведених досліджень обґрунтовано науково-технічний напрям підвищення ефективності експлуатації компресорних станцій магістральних газопроводів шляхом використання вторинних енергоресурсів - одержання рідкої вуглекислоти з димових газів опалювальних котелень; проведено розрахунок вмісту основних компонентів продуктів згорання природних газів при різних коефіцієнтах надлишку повітря у межах 0,88-0,92 і встановлено, що при потужності 4,2-4,6 МВт із димових газів можна одержувати 12 т/добу рідкої вуглекислоти.

6. Розроблені науково-технічні заходи та засоби щодо підвищення акустичної ефективності компресорних магістральних газопроводів та запропонована розроблена автором і теоретично досліджена стосовно газоперекачувальних агрегатів ГПА-Ц 63 принципово нова конструкція шумоглушника-теплоутилізатора з аеродинамічним опором зі сторони вихлопних газів 197 Па та з акустичною ефективністю 11.4-12 дБ.

7. Результати дисертаційної роботи методи кількісного аналізу аварійного ризику газотранспортних об'єктів підвищеної небезпеки схвалені і взяті для використання Управлінням Держпромгірнаглядом МНС України; розроблену трубчасту технологію спалювання газу у камерах згорання впроваджено на Бердичівській компресорній станції УМГ "Київтрансгаз України"; створені шумоглушники-утилізатори для газотурбінних агрегатів ГПА-Ц-63 та ГТК-10-І взяті для виготовлення Ухтинським експериментальним механічним заводом; розроблена методика для визначення залишкового ресурсу трубопроводів впроваджена на УМГ "Прикарпаттрансгаз".

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

Монографії

Шидловський О.С., Долінський А.А., Стогній Б.С., Говдяк P.M. та ін. Інноваційні пріоритети паливно-енергетичного комплексу України.- К.: Українські енциклопедичні знання, 2005.-493с.

Говдяк P.M., Семчук Я.М., Чабанович Л.Б., Шелковський Б.І., Кривенко Г.М. Енергоекологічна безпека нафтогазових об'єктів.- Івано Франківськ: Лілея - НВ, 2007.-554 с.

Говдяк P.M., Коснирєв Ю.М. Кількісний аналіз аварійного ризику газотранспортних об'єктів підвищеної небезпеки.- Львів, Кальварія, 2007.-160с.

Экономическая безопасность государства и интеграционные формы ее обеспечения // Под. Ред. Г.К. Вороновского, И.В. Недина. - К.: Знания Украины. - 2007. - 392 с.

Статті у наукових фахових виданнях з технічних наук

Семчук Я.М., Говдяк P.M., Кривенко Г.М., Дрогомирецький Я.М. Аналіз сучасного стану досліджень надійності магістральних нафтогазопроводів та причин і умов їх відмови// Розвідка та розробка нафтових і газових родовищ.-2001.- №38.- С.159-166.

Семчук Я.М., Говдяк P.M., Кривенко Г.М., Гораль Л.Т. Технічний та екологічний ризик при експлуатації магістральних трубопроводів// Розвідка та розробка нафтових і газових родовищ.-2001.- №1.- С.68-71.

Семчук Я.М., Говдяк P.M., Тимків Д.Ф. Основні напрямки розвитку концепції надійності магістральних газопроводів// Науковий вісник Ів.-Фр. нац. техн. ун-ту нафти і газу.: 2002.- №2(3).- С.76-80

Говдяк P.M., Семчук Я.М. Методичні основи визначення ризику, індексу небезпеки при проектуванні та експлуатації магістральних газопроводів // Науковий вісник Ів.- Фр. нац. техн. ун-ту нафти і газу.- 2002.- №2(3).- С.80-84

Карп И.Н., Говдяк Р.М., Калапунь И.М., Шелковский Б.И. Эффективное производство энергии на компрессорных станциях магистральных газопроводов // Экотехнологии и ресурсосбережение. - 2002 - № 3. - С. 12-24.

Говдяк P.M. Исследование и разработка мероприятий и оборудования для снижения уровня шума компрессорных станций// Экотехнологии и ресурсосбережение.- 2003.- №1.-С.50-57

Любчик Г.М., Говдяк P.M., Варламов Г.Б. та інші. Создание малотоксичных камер сгорания ГТУ// Экотехнологии и ресурсосбережение.- 2003.- №2.- С.65-73

Говдяк P.M., Шелковский Б.И., Любчик Г.М., Варламов Г.Б.// Актуальные проблемы модернизации газотурбинных и газоперекачивающих агрегатов. Экотехнологии и ресурсосбережение.- 2003.- №5.- С.66-72

Говдяк P.M., Міщенко В.П., Давидов Д.М. Поставки скрапленого природного газу- важливий чинник диверсифікації джерел газопостачання України// Нафтова і газова промисловість. -2003.- №1.- С 27-32.

Говдяк P.M. Стан і шляхи підвищення ефективності та надійності транспортування природного газу газотранспортною системою України// Розвідка та розробка нафтових і газових родовищ.-2003.- №2(7).- С.6-12.

Говдяк P.M., Бігун В.А., Поляченко Ю.М. Нові технічні рішення щодо електроживлення лінійних споживачів магістральних трубопроводів// Нафтова і газова промисловість. -2004.- №2.-С.33-34.

Говдяк P.M., Демченко Ю.В. Сучасні основи організації технологічного зв'язку на магістральних газопроводах// Нафтова і газова промисловість. -2004.- №3.- С.31-33.

Говдяк P.M., Давыдов Д.М., Мищенко В.Ф. Новые технологии производства и потребления сжиженного природного газа в Украине// Экотехнологии и ресурсосбережение.- 2004.- №4.- С.63-67

Говдяк P.M. Оцінка статичної та циклічної довговічності магістральних трубопроводів на стадії проектування// Розвідка та розробка нафтових і газових родовищ.-2004.- №2(11).- С.101-104. ,

Говдяк P.M. Проблемы и пути повышения экологической безопасности компрессорных станций газопроводов// Экотехнологии и ресурсосбережение.- 2004.- №6.- С.44-50

Семчук Я.М., Говдяк P.M. Особливості впливу магістральних нафтогазопроводів на довкілля// Вісник Кременчуцького державного політехнічного університету.-2004.- №5.-С.14-18.

Говдяк Р.М. Деякі проблеми оцінки ризику експлуатації об'єктів газової промисловості України // Науково-просвітницький центр “Екологія” - Київ: Наука, техніка. - 2004. - С.18-22.

Говдяк P.M., Любчик Г.М., Варламов Г.Б., Чабанович Л.Б., Шелковский Б.И. Методология экологического анализа энергетических объектов систем и территорий (ЕОС и Т)// Энергетика и электрификация.-2005.- №3.- С.50-55.

Говдяк P.M., Угляренко В.П., Чабанович Л.Б., Шелковський Б.І. Стан і основні напрямки підвищення вибухопожежобезпеки на газотранспортних підприємствах України// Розвідка та розробка нафтових і газових родовищ.-2005.- №4(17).- СІ 17- 125.

Говдяк P.M. Производство жидкой углекислоты на объектах газовой промышленности// Экотехнологии и ресурсосбережение.- 2005.- №3.- С.41-47

Говдяк P.M. Дослідження оптимального режиму роботи газової опалювальної котельні при спільній роботі з вуглекислотною установкою // Науковий вісник Ів.-Фр. нац. техн. ун-ту нафти і газу.- 2005.- №1(10).- С.127-131

Говдяк P.M., Чабанович Л.Б, Шелковський Б.І. Використання вторинних ресурсів компресорних станцій газопроводів для виробництва вуглекислоти// Збірник наукових праць інституту електродинаміки НАН України.- Київ: 2005.- С.38-43

Любчик Г.М., Говдяк P.M., Чабанович Л.Б., Шелковский Б.І. Розвиток систем опалювання на вихлопі утилізаційних ГТУ// Вестник национального университета «ХПИ».- 2005.- №6.- С. 145-153.

Говдяк P.M., Шелковский Б.И., Чабанович Л.Б., Гриник О.Г., Любчик Г.М., Варламов Г.Б. Перспективы повышения надежности, экологической безопасности и энергетической эффективности ГПА на основе применения трубчатой технологии сжигания газа// Збірник наукових праць інституту електродинаміки НАН України.-Київ: 2006.- С.54-57.

Любчик Г.Н., Говдяк Р.М., Чабанович Л.Б., Шелковский Б.И. Система утилизацииэнергии на выхлопе газотурбинных установок с дожиганием топлива // Збірник наукових праць інституту електродинаміки НАН України. - Київ: 2005 - С. 44-47.

Семчук Я.М., Чабанович Л.Б., Говдяк Р.М. Дослідження процесів формування ареалів забруднення атмосфери в районі компресорних станцій магістральних газопроводів // Розвідка і розробка нафтових і газових родовищ - Івано-Франківськ. - № 2 (15) - 2005. - С. 42-45.

Говдяк P.M., Дикий М.О., Болдін Ю.М., Чабанович Л.Б. Газотурбінна технологія „Водолій" та перспективи її впровадження в енергетичному комплексі України.// Збірник наукових праць інституту електродинаміки НАН України.- Київ: 2006.- С.43-44.

Любчик Г.М., Говдяк P.M., Реграги А. и др. Перспективы повышения энергетической эффективности теплових установок на базе газовых турбин // Экотехнологии и ресурсосбережение. -2007. -№3. -С.57-62.

Говдяк P.M., Любчик Г.М., Чабанович Л.Б. и др. Экологические аспекты модернизации ГПА ГТК-10 на основе применения трубчастой технология сжигания газа// Збірник наукових праць інституту електродинаміки НАН України - вересень 2007р.

Любчик Г.Н., Говдяк Р.М., Миколин Г.А., Шелковский Б.И., Зарицкий А.А. Экологический аудит газогорелочных устройств на основе применения метода базовых характеристик эмиссии NOх и СО // Экотехнологии и ресурсосбережение. -2007, №4. -С.64-70.

Говдяк Р.М., Любчик Т.М., Чабанович Л.Б., Гриник О.Г., Шелковський Б.І. Резерви енерго-ресурсозбереження і нові технології для використання на компресорних станціях магістральних газопроводів // Нафтогазова енергетика. - Івано-Франківськ. - 112 (3). - 2007. - С. 35-46.

Говдяк P.M., Любчик Г.М., Чабанович Л.Б, Микулин Г.А., Гриник О.Г., Шелковский Б.И. Экологические аспекты модернизации ГПА ГТК-10-4 на основе применения трубчатой технологии сжигания газа // Праці Інституту електродинаміки Національної академії наук України. -2007. - С.29-34.

Говдяк Р.М., Грудз В.Я. Діагностика стану газоперекачувальних агрегатів в умовах компресорних станцій // Нафтогазова енергетика. - Івано-Франківськ. - №1(6) - 2008. - С.47-51.

Патенти

Деклараційний патент України на корисну модель №5959 МПК7 С25В1/100, В01D53/-14, С25В1/100, В01D53. Установка для одержання вуглекислоти з димових газів. Говдяк Р.М., Чабанович Л.Б., Шелковський Б.І - Опубл. 15.03.2005, Бюл. №3.

Деклараційний патент України на корисну модель №8303, МПК(2006) F04D25/02, F17D1/07 (2006.01), В01D53/14. Газотурбінна установка. Дикий М.О., Говдяк Р.М., Уваричев О.М., Чабанович Л.Б., Шелковський Б.І. - Опубл. 15.07.2005, Бюл. №7.

Деклараційний патент України на корисну модель №8304, МПК 7F01K21/04, F02C6/18, Спосіб збільшення кількості робочого тіла в циклі енергоустановки газопаротурбінного приводу газо-перекачувального агрегату при температурах навколишнього середовища, вищих за розрахункові. Дикий М.О., Говдяк Р.М., Уваричев О.М., Чабанович Л.Б., Шелковський Б.І. - Опубл. 15.07.2005, Бюл. №7.

Деклараційний патент на корисну модель № 14877 Говдяк Р.М., Пужайло А.Ф., Чабанович Л.Б., Шелковський Б.І. Газоперекачувальна компресорна станція магістрального газопроводу. Бюл. № 5. 15.05.2006.

Деклараційний патент України на корисну модель № 5396 МПК(2006)601 № 3/00. Процес визначення залишкового ресурсу нафтогазопроводів та збільшення нормативного терміну їх експлуатації. Івасів В.м., Говдяк Р.М., Івченко О.Г., Лопушанський А.Я., Кравець О.А., Дрогомирецький М.М., Василюк В.М., Ільницький Р.М., Артем В.І. - Опубл. 17.05.2006., Бюл. № 6.

Патент України на корисну модель №21118. МПК (2007), F23D14/02, F23D14/22 (2007.01) Газовий пальник для трубчастої камери згорання газотурбінної установки/ Г.Н.Любчик, Р.М.Говдяк., Г.Б.Варламов та ін. - Опубл. 15.02.2007, Бюл. №2.

Патент України на корисну модель №22994. МПК (2006), F23С7/00 Спосіб спалювання газового палива у камері згорання енергетичної установки/ Р.М.Говдяк., Л.Б.Чабанович, А.Ф.Пужайло та ін. - Опубл. 25.04.2007, Бюл. №5.

Патент України на корисну модель №23592. МПК (2006), F01N5/00, F28F27/00 Шумоглушник-теплоутилізатор вихлопних газів газотурбінної установки/ Р.М.Говдяк., Л.Б.Чабанович, О.Г.Гриник, Б.І.Шелковський - Опубл. 25.05.2007, Бюл. №7.

Патент України на корисну модель №24041. МПК (2006), F01N5/00, F28F27/00 Шумоглушник-утилізатор для газотурбінної установки/ Р.М.Говдяк., Л.Б.Чабанович, А.Л.Терєхов, Б.І.Шелковський - Опубл. 11.06.2007, Бюл. №8.

Патент России на полезную модель № 61814 МПК7F04D25/02, F17D1/07, С25В1/100, В01D53/14. Газоперекачивающая компрессорная станция магистрального газопровода/ Говдяк Р.М., Пужайло А.Ф., Чабанович Л.Б., Шелковский Б.И. Опубл. 10.03.2007, Бюл. №7.

Патент России на полезную модель № 46753 МПК 7С25В1/00. Установка для получения углекислоты из дымовых газов/ Р.м. Говдяк, Т.б.Чабанович, Б.И.Шелковский. Опубл. 27.07.2005, Бюл. №21.

Матеріали конференцій

Говдяк P.M., Калапунь І.М., Чабанович Л.Б., Шелковський Б.І. Сучасний досвід створення утилізаційних парогазових установок для виробництва різних видів енергії на компресорних станціях магістральних газопроводів// Матер, міжн. конф. „ Нафта і газ України-2002". Том 2, Київ УНГА, 2002.- С 89-91.

Говдяк P.M., Калапунь І.М., Чабанович Л.Б., Шелковський Б.І., Бендяк В.Л., Чабанович Р.Б. Виробництво електроенергії в утилізаційних парогазових установках на компресорних станціях магістральних газопроводів// Матер, міжн. конф. „ Нафта і газ України-2002". Том 2, Київ УНГА, 2002.- С 92-94.

Говдяк P.M., Калапунь І.М., Чабанович Л.Б., Шелковський Б.І., Бендяк В.Л., Чабанович Р.Б. Стан і шляхи підвищення ефективності та надійності транспортування природного газу газотранспортною системою України // Матер, міжн. конф. „Нафта і газ України-2002”. Том 2, Київ УНГА, 2002.- С 95-96.

Говдяк P.M., Дикий М.О., Болдін Ю.М., Чабанович Л.Б., Шелковський Б.І. Підвищення ефективності надійності та екологічної безпеки газотранспортної системи України// Збірник праць VI11 міжн. конф. „Енергетична безпека Європи XXI століття. Євразійські енергетичні коридори" 25-27 травня 2005р., Київ, С. 75-77

Говдяк P.M., Любчик Г.М., Чабанович Л.Б., Шелковський Б.І. Підвищення екологічної безпеки компресорних станцій магістральних газопроводів// Матер. 8-ої Міжнар. наук.-практ. конф. „Нафта і газ України-2004” (Судак, 29 вересня1 жовтня 2004р.) у 2-х томах.-Л.: Центр Європи, 2004.- Том 2.- 388с.

Говдяк P.M., Любчик Г.М., Варламов Г.Б., Чабанович Л.Б., Шелковський Б.І. Ефективні технології допалювання палива у форсованих системах утилізації теплових енергій на вихлопі ГТУ // Матер. 8-ої Міжнар. наук.-практ. конф. „Нафта і газ України-2004” (Судак, 29 вересня1 жовтня 2004р.) у 2-х томах.-Л.: Центр Європи, 2004.- Том 2.- 388с.

Говдяк P.M., Любчик Г.М., Варламов Г.Б., Шелковский Б.И. Когенерация и утилизация энергии на выхлопе ГТУ. // Программа и тезисы. Первая в Украине Международная конференция «Когенерация промышленности и коммунальной энергетики», 18-20 октября, 2004 , Киев, Украина.

Говдяк P.M, Чабанович Л.Б., Шелковський Б.І., Любчик Г.М. та інші. Деякі попередні результати виробничих випробувань модернізованої камери згорання ГПА ГТК-10 на основі трубчастих пальників// Інформаційний огляд ДК „Укртансгаз” №4 (40), 2006. -С.8-9.

Любчик Г.Н. Говдяк Р.М., варламов Г.Б. и др. Повышение энергетической эффективности газотурбинных установок на основе внецикловой утилизации и когенерации энергии // Материали наукового семінару з міжнародною участю „Інтегровані структури паливно-енергетичного комплексу в системі антикризового управління „ 12-14 квітня 2007 р., м.Запоріжжя.

АНОТАЦІЯ

Говдяк Р.М. Підвищення ефективності магістральних газопроводів на пізній стадії експлуатації. - Рукопис.

Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.15.13 - "Трубопровідний транспорт, нафтогазосховища". -- Івано-Франківський національний технічний університет нафти і газу, 2008.

Для підвищення ефективності експлуатації магістральних газопроводів удосконалено методику прогнозування зниження аварійного ризику.

Розглянуті сучасний стан, проблеми і перспективи прогнозування залишкового ресурсу магістральних газопроводів на пізній стадії експлуатації. Запропоновано новий підхід до інтегральної оцінки залишкового ресурсу окремої дільниці трубопроводу та обладнання компресорної станції, що ґрунтується на закономірностях накопичення втомленості пошкодження.

Проведено огляд напрямків створення малотоксичних камер згорання з урахуванням сучасних тенденцій розвитку газотурбінних технологій з орієнтацією на газотурбінні газоперекачуючі агрегати (ГПА). Обґрунтовано і показано перспективність реалізації при створенні малотоксичних камер згоряння модульного типу на базі використання унікальних конструктивних і аеродинамічних особливостей насадка Борда.

Досліджено можливість використання вторинних енергоресурсів шляхом виробництва рідкої вуглекислоти на компресорних станціях магістральних газопроводів.

Науково обґрунтовано і впроваджено при проектуванні компресорних станцій газопроводів комплекс заходів та обладнання щодо зниження їх рівня шуму. З урахуванням результатів лабораторних досліджень розроблені методики розрахунку акустичної ефективності конструкцій шумоглушників-утилізаторів випускних газів газоперекачуючих агрегатів. Ключові слова: магістральні газопроводи, аварійний ризик, залишковий ресурс, газотурбінна установка, трубчастий модуль, вторинні енергоресурси, акустична ефективність.

АННОТАЦИЯ

Говдяк Р.М. Повышение эффективности магистральных газопроводов на поздней стадии эксплуатации. - Рукопись.

Диссертация на соискание научной степени доктора технических наук по специальности 05.15.13 - "Трубопроводный транспорт, нефтегазохранилища". - Ивано-Франковский национальный технический университет нефти и газа, 2008.

Диссертация посвящена решению проблемы повышения эффективности магистральных газопроводов на поздней стадии эксплуатации. Выполнен анализ состояния отечественных магистральных газопроводов. Установлено, что газопроводы и компрессорные станции эксплуатируются от пятнадцати до пятидесяти лет, что приводит к учащению их отказов. Установлены основные причины и последствия отказов. Для повышения эффективности эксплуатации магистральных газопроводов усовершенствовано методику прогнозирования снижения технических и экологических рисков. При исследовании аварийного риска при эксплуатации магистральных газопроводов необходимо проводить ранжировку отдельных участков частотным расчетом. Показано, что анализ риска на газотранспортных системах должен включать четыре взаимосвязанных этапа: на первом этапе определяют основные потенциальные опасности; на втором проводят анализ и количественную оценку возможных последствий от аварий, на третьем - проводят частотный анализ возможных аварий, а на четвертом - рассчитываются ожидаемые убытки и потери от отдельных аварий, а также величина прогнозирования риска.

Рассмотрены современное состояние, проблемы и перспективы прогнозирования остаточного ресурса трубопроводов. Предложен новый подход к интегральной оценке остаточного ресурса участка трубопровода, базирующийся на закономерностях накопления усталостного повреждения.

Разработана методика оценки остаточного ресурса газотрубопроводов и приведено прогнозирование ресурса газопровода с учетом пульсаций давления.

Проведено прогнозирование остаточного ресурса оборудования компрессорных станций. Для этого разработан метод построения функций изменения диагностического параметра и выбран коэффициент полезного действия (КПД). Определен остаточный ресурс отдельного газоперекачивающего агрегата компрессорной станции и оценено критическое значение коэффициента полезного действия.

Выполнен обзор направлений создания малотоксичных камер сгорания с учетом современных тенденций развития газотурбинных технологий с ориентацией на газотурбинные газоперекачивающие агрегаты (ГПА). Анализ эмиссионных характеристик NОх і СО выполнен по результатам промышленных испытаний газотурбинных ГПА, начиная с агрегатов первого поколения до установок современного типа. Показано, что в практике создания и доводки малотоксичных камер сгорания сложилось три основных направления: разработка малотоксичных горелок с последующей доводкой созданных на их основе камер сгорания (последовательная схема);одновременная доводка рабочего процесса горелочных систем и соответствующих конструкций камер сгорания (параллельная схема); отработка конструкции камеры в целом в соответствии с той или иной концепцией ее реализации (интегральная схема). Обоснована и показана перспективность реализации при создании малотоксичных камер сгорания модульного типа на основе использования уникальных конструктивных и аэродинамических особенностей насадка Борда.

Исследована возможность производства жидкой углекислоты на компрессорных станциях магистральных газопроводов. Приведены существующие технологические схемы получения углекислоты из дымовых газов котельных на углекислотных заводах и на установках различных производств. Даны основные технико-экономические характеристики блочно-комплектной углекислотной установки, создаваемой из импортного оборудования на компрессорных станциях газопроводов.

Научно обоснован и внедрен при проектировании компрессорных станций газопроводов комплекс мероприятий и оборудования по снижению их уровня шума. С учетом результатов лабораторных исследований разработаны методики расчета акустической эффективности конструкций шумоглушителей-утилизаторов выхлопных газов газоперекачивающих агрегатов. Приведены основные энергетические и акустические характеристики шумоглушителей-утилизаторов для ГПА.

Ключевые слова: магистральные газопроводы, аварийный риск, остаточный ресурс, газотурбинная установка, трубчатый модуль, вторичные энергоресурсы, акустическая эффективность.

ANNOTATION

Govdyak R.M. The increase of the efficiency of the main gas- pipelines on the late stage of exploitation. Manuscript.

The dissertation on the scientific degree of the doctor of engineering sciences on specialty 05.15.13 - pipeline transport, oil-gas storage units. - The Ivano-Frankivsk National Technical University of Oil and Gas, 2008.

To increase the efficiency of exploitation of the main gas pipelines the method of prognostication the emergency risk is improved. It has been considered the modern state problems and prospects of prognostication the remaining resource of the main gas pipelines on the late stage of exploitation.

The review of directions of creation of low toxic combustion chambers is executed in view of modern tendencies of development of gas turbine know-how basically with orientation to gas turbine and compressor units (GTCU).

A complex of measures and equipment for noise reduction has been scientifically grounded and implemented during designing of gas pipeline compressor stations. Taking into account the results of laboratory research, methods of calculation of acoustic efficiency of the mufflers-utilizators of exhaust of gas-compressor units have been elaborated.

Possibility of liquid carbonic acid production on compressor stations of gas-main pipelines is studied. Existing process diagrams of liquid carbonic acid production from furnace gases of carbonic acid plants and other production units are given.

Keywords: gas pipelines, emergency risk, remaining resource, gas-turbine setting, tubular module, second energetic resources, acoustic efficiency.

Страницы: 1, 2


© 2010 BANKS OF РЕФЕРАТ