|
Пластмассы, сталь, сплавы
Пластмассы, сталь, сплавы
15 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА «Физика металлов и металловедения» КОНТРОЛЬНО - КУРСОВАЯ РАБОТА ВАРИАНТ № 12 Выполнил студент группы 220761 Кузьмичев Александр Александрович Проверил Мясникова Л.В. Содержание Термопластичные пласмассы……………………………………...…3 Сталь 12ХГТ.………………………………………..………………...11 Железоуглеродистый 1% С сплав..…………………………………..12 ТЕРМОПЛАСТИЧНЫЕ ПЛАСТМАССЫ В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы. Термопласты имеют ограниченную рабочую температуру, свыше 60-70 градусов Цельсия начинается резкое снижение физико-механических свойств. Более термостойкие структуры могут работать до 150 -250 0С, а термостойкие с жесткими цепями и циклические структуры устойчивы до 400 -600 0С. |
Таблица 1. ТЕМПЕРАТУРА СТЕКЛОВАНИЯ Tст И ТЕМПЕРАТУРА ПЛАВЛЕНИЯ Tпл НЕКОТОРЫХ ПЛАСТИЧЕСКИХ ПОЛИМЕРНЫХ МАТЕРИАЛОВа | | Полимер | Tст, ° С | Tпл, ° С | | Полиэтилен | -80 | 135 | | Полипропилен | -10 | 180 | | Полистирол | 100 | - | | Поливинилхлорид | 80 | 270 | | Поливинилиденхлорид | -20 | 190 | | Полиметилметакрилат | 105 | - | | Полиакрилонитрил | 105 | 310 | | Найлон-6 (капрон) | 50 | 223 | | Найлон-6,6 | 57 | 270 | | Полиэтилентерефталат | 69 | 265 | | Полиформальдегид (полиоксиметилен, параформ) | -85 | 180 | | Полиэтиленоксид (полиоксиэтилен) | -67 | 70 | | Триацетат целлюлозы | 130 | 300 | | Тефлон (политетрафторэтилен) | -113 | 325 | | а Ниже Tст пластмассы хрупки и тверды, между Tст и Tпл - гибки и податливы, выше Tпл они являются вязкими расплавами. | | |
При длительном статическом нагружении появляется вынужденно - эластическая деформация и прочность понижается. С увеличением скорости деформирования не успевает развиваться высокоэластичная деформация и появляется жесткость, иногда даже хрупкое разрушение. Более прочными и жесткими являются кристаллические полимеры. Предел прочности термопластов составляет 10 - 100 МПа. Модуль упругости (1,8 - 3,5)103 МПА. Они хорошо сопротивляются усталости, их долговечность выше, чем у металлов. Предел выносливости составляет 0,2 - 0,3 предела прочности. При частотах нагружения свыше 20 Гц происходят разогрев материала и уменьшение прочности. |
Таблица 2. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ПРОМЫШЛЕННЫХ ПЛАСТМАСС | | Полимер | Диэлектрическая проницаемость при 60 Гц | Электри-ческая прочность, В/см | Коэффициент потери мощности при 60 Гц | Удельное сопротивление, ОмЧсм | | Полиэтилен | 2,32 | 6Ч106 | 5Ч10-4 | 1019 | | Полипропилен | 2,5 | 2Ч106 | 7Ч10-4 | 1018 | | Полистирол | 2,55 | 7Ч106 | 8Ч10-4 | 1020 | | Полиакрилонитрил | 6,5 | - | 0,08 | 1014 | | Найлон-6,6 | 7,0 | 3Ч103 | 1,8 | 1014 | | Полиэтилен- терефталат | 3,25 | 7Ч103 | 0,002 | 1018 | | |
Термопласты делятся на неполярные и полярные. НЕПОЛЯРНЫЕ ТЕРМОПЛАСТИЧНЫЕ ПЛАСТМАССЫ К ним относятся полиэтилен, полипропилен, полистирол и фторопласт - 4. Полиэтилен ( -СН2 - СН2)n - продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам. По плотности полиэтилен подразделяют на полиэтилен низкой плотности, получаемый в процессе полимеризации при высоком давлении (ПЭВД), содержащий 55 - 65% кристаллической фазы, и полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД), имеющий кристалличность до 74 - 95 %. |
СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОЙ ПЛОТНОСТИ | | СП | от 1000 до 50 000 | | Тпл | 129-135° С | | Тст | ок. -60° С | | Плотность | 0,95-0,96 г/см3 | | Кристалличность | высокая | | Растворимость | растворим в ароматических углеводородах только при температурах выше 120° С | | |
Чем выше плотность и кристалличность полиэтилена, тем выше прочность и теплостойкость материала. Длительно полиэтилен можно применять при температуре до 60 - 100 0С. Морозостойкость достигает - 70 0С и ниже. Полиэтилен химически стоек и при нормальной температуре нерастворим ни в одном из известных растворителей. |
СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОЙ ПЛОТНОСТИ | | СП | от 800 до 80 000 | | Тпл | 108-115° С | | Тст | ниже -60° С | | Плотность | 0,92-0,94 г/см3 | | Кристалличность | низкая | | Растворимость | растворим в ароматических углеводородах только при температурах выше 80° С | | |
Недостатком полиэтилена является его подверженность старению. Для защиты от старения в полиэтилен вводят стабилизаторы и ингибиторы(2-3% сажи замедляют процессы старения в 30 раз). Под действием ионизирующего излучения полиэтилен твердеет: приобретает большую прочность и теплостойкость. Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей, пленок, он служит покрытием на металлах для защиты от коррозии, влаги, электрического тока. Полипропилен (-СН2 - СНСН3 -)n является производной этилена. Применяя металлоорганические катализаторы, получают полипропилен, содержащий значительное количество стереорегулярной структуры. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150 0С. Полипропиленовые пленки прочны и более газонепроницаемы, чем полиэтиленовые, а волокна эластичны, прочны и химически стойки. Недостатком пропилена является его невысокая морозостойкость (от -10 до -20 0С). Полипропилен применяют для изготовления труб, конструкционных деталей автомобилей мотоциклов, холодильников, корпусов насосов, различных ёмкостей и др. Пленки используют в тех же целях, что и полиэтиленовые. |
СВОЙСТВА ИЗОТАКТИЧЕСКОГО ПОЛИПРОПИЛЕНА | | СП | от 1000 до 6000 | | Тпл | 174-178° С | | Тст | ок. 0° С | | Плотность | 0,90 г/см3 | | Кристалличность | высокая | | Растворимость | растворим в ароматических углеводородах только при температурах выше 120° С | | |
Полистирол ( -СН2 - СНС6Н5 -)n - твердый, жесткий, прозрачный, аморфный полимер. Удобен для механической обработки, хорошо окрашивается, растворим в бензоле. Полистирол наиболее стоек к воздействию ионизирующего излучения по сравнению с другими термопластами (присутствие в макромолекулах фенильного радикала). Недостатками полистирола являются его невысокая теплостойкость. Склонность к старению, образованию трещин. Из полистирола изготовляют детали для радиотехники, телевидения и приборов, детали машин, сосуды для воды и химикатов, пленки стирофлекс для электроизоляции. |
СВОЙСТВА ПОЛИСТИРОЛА | | СП | от 500 до 5000 | | Тпл | аморфен и не имеет точки плавления | | Тст | ок. 90° С | | Плотность | 1,08 г/см3 | | Кристалличность | Отсутствует | | Растворимость | легко растворим в ароматических углеводородах и кетонах при комнатной температуре | | |
Фторопласт -4(фторлон) политетрафторэтилен (-CF2- CF2 -)n является аморфно - кристаллическим полимером, до температуры 250 0С скорость кристаллизации мала и не влияет на его механические свойства, поэтому длительно эксплуатировать фторопласт -4 можно до температуры 250 0С. Разрушение материала происходит при температуре выше 4150С. Аморфная фаза находится в высокоэластичном состоянии, что придает фторопласту - 4 относительную мягкость. При весьма низких температурах (до -269 0С) пластик не охрупчивается. Фторопласт -4 стоек к действию растворителей, кислот, щелочей, окислителей. Практически он разрушается только под действием расплавленных щелочных металлов и элементарного фтора, кроме того, пластик не смачивается водой. Политетрафторэтилен малоустойчив к облучению. Это наиболее высококачественный диэлектрик. Фторопласт -4 обладает очень низким коэффициентом трения, который не зависит от температуры. Недостатками фторопласта -4 являются хладотекучесть, выделение токсичногофтора при высокой температуре и трудность его переработки. Фторопласт -4 применяют для изготовления труб, вентилей, кранов, насосов, мембран, уплотнительных прокладок, манжет, сильфонов, электрорадиотехнических деталей, антифрикционных покрытий на металлах. ПОЛЯРНЫЕ ТЕРМОПЛАСТИЧНЫЕ ПЛАСТМАССЫ К полярным пластикам относятся фторопласт-3. органическое стекло, поливинилхлорид, полиамиды, полиэтилентерефталат. Поликарбонат, полиарилаты, пентапласт, полиформальдегид. Фторопласт 3(фторлон -3)- полимер трифторхлортилена, имеет формулу (-СF2 -CFCl -)n. Введение атома хлора нарушает симметрию звеньев макромолекул, материал становится полярным, диэлектрические свойства снижаются, но появляется пластичность и облегчается переработка материала в изделия. Фторопласт -3, медленно охлажденный после формования, имеет кристалличность около 80 -85%. А закаленный - 30-40%. Интервал рабочих температур от -150 до 70 0С. При температуре 315 0С начинается термическое разрушение. Хладотекучесть у полимера проявляется слабее, чем у фторопласта -4. По химической стойкости он уступает политетрафторэтилену, но всё же обладает высокой стойкостью к действию кислот, окислителей, растворов щелочей и органических растворителей. Фторопласт -3 используют как низкочастотный диэлектрик, кроме того, из него изготовляют трубы, шланги, клапаны, насосы, защитные покрытия металлов и др. Органическое стекло - это прозрачный аморфный термопласт на основе сложных эфиров акриловой и метакриловой кислот. Чаще всего применяется полиметилметакрилат, иногда пластифицированный дибутилфталатом. Материал более чем в 2 раза легче минеральных стекол 91180кг/м3, отличается высокой атмосферостойкостью, оптически прозрачен (светопрозрачность92%), пропускает75% ультрафиолетового излучения. При температуре 800С органическое стекло начинает размягчаться; при температуре 105 -1500С появляется пластичность, что позволяет формовать из него различные детали. Критерием, определяющим пригодность органических стекол для эксплуатации, является не только их прочность, но и появление на поверхности и внутри материала мелких трещин, так называемого серебра. Этот дефект снижает прозрачность и прочность стекла. Причиной появления «серебра» являются внутренние напряжения, возникающие в связи с низкой теплопроводностью и высоким коэффициентом расширения. Органическое стекло стойко к действию разбавленных кислот и щелочей, углеводородных топлив и смазочных материалов. Старение органического стекла в естественных условиях протекает медленно. Недостатком органического стекла является невысокая поверхностная стойкость. Увеличение термостойкости и ударной вязкости органического стекла достигается ориентированием. Органическое стекло используется самолетостроение, автомобилестроение. Поливинилхлорид является аморфным полимером. Пластмассы имеют хорошие электроизоляционные характеристики, стойкие к химикатам, не поддерживают горение. Непластифицированный твердый поливинилхлорид называется винипластом. Винипласты имеют высокую прочность и упругость. Из винипласта изготовляют трубы детали вентиляционных установок теплообменников и т.д. |
СВОЙСТВА ПОЛИВИНИЛХЛОРИДА | | СП | от 500 до 5000 | | Тпл | аморфен и не имеет точки плавления | | Тст | ок. 20° С | | Плотность | 1,60 г/см3 | | Кристалличность | очень низкая | | Растворимость | растворим при комнатной температуре в небольшом числе растворителей | | |
Полиамиды - это группа пластмасс с известными названиями: капрон, нейлон, амид. Полиамиды - кристаллизирующиеся полимеры. При одноосной ориентации получают полиамидные волокна, нити, пленки. Из полиамидов изготовляют шестерни, втулки, подшипники, гайки, шкивы. Полиамиды используют в электротехнической промышленности, медицине и, кроме того, как антифрикционные покрытия. Полиуретаны - содержат уретановую группу. Кислород в молекулярной цепи сообщает полимерам гибкость, эластичность; им присуща высокая атмосферостойкость и морозостойкость (от -60 до -70 оС). Верхний температурный предел составляет 120-170 оС. Из полиуретана вырабатывают пленочные материалы и волокна, которые малогигроскопичны и химически стойки. Полиэтилентерефталат - сложный полиэфир, выпускается под названием лавсан. Полиэтилентерефталат является диэлектриком и обладает высокой химической стойкостью. Из полиэтилентерефталата изготовляют шестерни, кронштейны, канаты, ремни, ткани. Сталь 12ХГТ |
Ковка | Охлаждение поковок, изготовленных | | | Из слитков | Из заготовок | | Вид полуфабриката | Температурный интервал ковки, С | Размер сечения, мм | Условия охлаждения | Размер сечения, мм | Условия охлаждения | | Шток | 1220-800 | До 100 | В яме с закрытой крышкой | До 250 | На воздухе | | |
Легирующие элементы, вводятся в сталь для получения требуемой структуры и свойств. Все элементы, за исключением углерода, азота, водорода образуют с железом твердые растворы замещения. Сталь 12ХГТ относится к сталям хромомарганцевым с добавлением титана. Марганец - сравнительно дешевый элемент, применяется, как заменитель в стали никеля. Как и хром, марганец растворяется как в феррите и цементите. Повышая устойчивость аустенита, марганец снижает критическую скорость закалки и повышает прокаливаемость, особенно доэвтектоидной стали. Введение небольшого количества титана, образующего труднорастворимые в аустените карбиды TiC, уменьшает склонность хромомарганцевых сталей к перегреву. При нагреве стали 12ХГТ до 1000 оС с последующим подстуживанием до 870 оС,для закалки величина зерна сохраняется на уровне 8-го балла. Сталь 12ХГТ применяется: в зубчатых колесах коробок передач. |
Массовая доля элемента, %, по ГОСТ 4543-71 | Температура критических точек, С | | C | Si | Mn | S | P | Cr | Ni | Mo | N | W | Ti | Cu | Ac1 | Ac3 | Ar1 | Ar3 | | 0.l7 | 0.37 | 0.8 | 0.035 | 0.305 | 1 | 0.3 | - | 0.008 | - | 0.03 | 0.3 | 740 | 825 | 650 | 730 | | |
|
Режим термообработки | Сечение, Мм | у02, H/мм2 | уВ, H/мм2 | д, % | ш, % | KCU, Дж/см2 | HRC | HB | | Операция | t, C | Охлаждаю- щая среда | | Не менее | | | | Отжиг или отпуск | | | Свыше 5 до 250 | Не определяются | | ? 217 | | Нормализация | 880-950 | Масло | До 80 | 885 | 980 | 9 | 50 | 78 | | - | | Закалка | 855-885 | Масло | Свыше 80 до 150 | 885 | 980 | 7 | 45 | 70 | | | | Отпуск | 150-250 | Воздух или вода | Свыше 150 до 250 | 885 | 980 | 6 | 40 | 66 | | | | В термически обработанном состоянии | | | До 100 | 395 | 615 | 18 | 45 | 59 | | | | Цементация Закалка Отпуск | 920-950 820-860 180-200 | Воздух Масло Воздух | До 20 | 950 | 1200 | 10 | 50 | 80 | Повер-хности 56-62 | Сердцевины ? 341 | | | | | 20-60 | 800 | 1000 | 9 | 50 | 80 | Повер-хности 56-62 | Сердцевины240-300 | | Закалка Отпуск Азотирование | 910 570 500-520 | Масло Воздух С печью до 150 С | | | | | | | Повер-хности 55-59 | | | |
Механические свойства при комнатной температуре Железоуглеродистый 1% С сплав Сплав железа с углеродом (количество углерода 1%) при температуре 1200оС. Фазовые превращения. С = К + 1 - Ф К = 1 Ф = 1 С = 1 +1-1=1 T(?c) Жидкая фаза + феррит 1% C 1600 А D H В Жидкая фаза феррит J 1400 Nжидкая фаза жидкая фаза феррит + + + аустенит аустенит цементит(первичный) 1200 1147 Аустенит E аустенит + цементит C F (вторичный) 1000 + аустенит ледебурит Цементит (первичный) G + (аустенит + цементит) + феррит феррит аустенит ледебурит 800 + S цементит феррит 727 K + Pцементит перлит + цементит цементит 600 (вторичный) (вторичный) цементит (третичный) + + (первичный) перлит ледебурит + (феррит + (перлит + цементит) ледебурит 400 Q цементит) (перлит + цементит) L феррит + 0.02 0.08 (2.14) 3 4 4.43 5 6 6.67 перлит Стали Чугуны Содержание углерода,(%) 0 10 20 30 40 50 60 70 80 90 100 Содержание цементита (Fe3C), (%). Диаграмма состояния железо - карбид железа. Кривая охлаждения в интервале температур от 0? до 1600?с (с применением правил фаз) для сплава, содержащего 1,0% С. T (?c) 0 1600 I 1490 ?с 1290 ?с 1200 ІІ III 800 ІV 800 ?с 727?с V 400 0 t (c) время 0-I- жидкая фаза; I- точка линии ликвидус (начало кристаллизации); I-II- жидкая фаза + аустенит; II- точка линии солидус (окончание кристаллизации); II-III- сплав приобретает однофазную структуру - аустенит; III- точка линии предельной растворимости С в г-Fe; III-IV- фаза равновесия аустенита и феррита; IV- точка линии эвтектоидных превращений сплавов; IV-V-эвтектоидное превращение (феррит + цементит); V-VI - область фазового равновесия перлита и цементита(вторичного). Список использованной литературы 1. М.М. Колосков, Ю.В. Доибенко-М, " Марочник сталей и сплавов ". Издательство " Машиностроение ". 2. Ю.М Лахтин, В.И Леонтьева, " Материаловедение". Издательство “Машиностроение”,1972. 3. Б.Н. Арзамасов, И. И. Сидорин, " Материаловедение" Издательство “Машиностроение”,1986.
|
|