Решение задач по теплотехнике
Решение задач по теплотехнике
15 Контрольная работа № 1 Задача 6 До какой температуры будет нагрет углекислый газ объемом , если сообщить ему теплоту Q при постоянном, абсолютном давлении? Начальная температура газа . Определить объем газа в конце процесса, а также удельные значения изменения внутренней энергии, энтальпии и энтропии в процессе. Теплоемкость принять не зависящей от температуры. Дано: МПа МПа Решение: Определяем температуру конца процесса из формулы для количества теплоты в данном процессе: где: объем газа при нормальных условиях - теплоемкость для двухатомного газа Определяем объем газа в конце процесса: Определяем работу процесса: Определяем изменение внутренней энергии процесса: Определяем изменение энтальпии для двухатомного газа Определяем изменение энтропии Задача 16 Определить теоретическую скорость адиабатического истечения и массовый расход воздуха из сужающегося сопла площадью выходного сечения , если абсолютное давление перед соплом , а давление среды в которую вытекает воздух . Температура воздуха перед соплом . Скорость воздуха на входе в сопло и потерями на трение пренебречь. Будет ли полное расширение в сопле, если при прочих равных условиях давление за соплом понизится до 400 кПа? Как при этом изменится расход и скорость истечения воздуха? Дано: МПа МПа Решение: Записываем уравнение сплошности: - массовый расход газа кг/с; - скорость потока в рассматриваемом сечении м/с. Так как применяем формулу: м/с. кг/с при понижении давление за до 400 кПа кг/с Расход и скорость газа в сопле увеличились Задача 18 Влажный насыщенный водяной пар с начальным параметром , дросселируется до давления . Определить состояние пара в конце процесса дросселирования и его конечные параметры, а также изменение его внутренней энергии и энтропии. Условно изобразить процесс дросселирования на h-s диаграмме. Дано: Решение: Используем для определения конечных параметров h-s диаграмму Таблица результатов h - s диаграммы |
Параметры | Р, МПа | t, К | | h кДж/кг | S кДж/кг | | 1 | 5 | 263 | 0,038 | 2273 | 5,9 | | 2 | 0,3 | 160 | 0,48 | 2273 | 6,17 | | |
Определяем изменение внутренней энергии Определяем изменение энтропии Задача 26 Одноступенчатый поршневой компрессор всасывает воздух в количестве V при давлении и и сжимает его до давления по манометру . Определить секундную работу сжатия и теоретическую мощность привода компрессора для случаев изотермического, адиабатного и политропного процессов (с показателем политропы n = 1,2) сжатия. Определить температуру воздуха в конце адиабатного и политропного сжатия. Сделать вывод по данным процесса. Дано: МПа Решение: а) Изотермический процесс Работа изотермического процесса: Мощность: Вт б) Адиабатный при к = 1,4 Определяем температуру в конце сжатия Мощность: Вт в) Политропный процесс n = 1,2 Мощность: Вт Вывод: наибольшей работой сжатия при данных условиях обладает изотермический процесс и соответственно он будет наиболее выгодный. Контрольная работа № 2 Задача 2 По данным тепловых измерений средний удельный тепловой поток через ограждение изотермического вагона при температуре наружного воздуха и температуру воздуха в вагоне составил q. На сколько процентов изменится количество тепла, поступающего в вагон за счет теплопередачи через ограждение, если на его поверхность наложить дополнительный слой изоляции из пиатерма толщиной и с коэффициентом теплопроводности ? Дано: Решение: Определяем из уравнения термическое сопротивление теплопередачи: Так как в данном примере члены и постоянны выразим R Если на его поверхность наложить дополнительный слой изоляции из пиатерма, то Подставляем: Таким образом, количество тепла уменьшиться на Задача 12 По трубе диаметром мм, течет вода со средней скоростью . Температура трубы на входе в трубу средняя температура внутренней поверхности трубы . На каком расстоянии от входа температура нагреваемой воды достигнет Дано: Решение: 1. Средняя разность температур Если , тогда . 2. Движущая сила процесса теплопередачи: С Физические константы нагреваемой жидкости: - коэффициент теплопроводности - коэффициент теплоемкости - кинематический коэффициент вязкости - динамический коэффициент вязкости Определяем среднее значение конвективной передачи использую следующие зависимости: где: критерий Рейнольдса - Критерий Прандтля - коэффициент температуропроводности Определяем Нуссельта Отсюда: Удельная тепловая нагрузка со стороны нагреваемой жидкости Ориентировочная площадь поверхности теплообмена: Задаемся коэффициентом теплопередачи из ряда Из формулы для поверхности теплообмена определяем длину трубы: м Задача 19 Определить тепловой поток излучением и конвекцией от боковой поверхности цилиндра диаметром и длиной , со степенью черноты в окружающую среду имеющую температуру , если температура поверхности , а коэффициент теплопередачи конвекцией . Каково значение суммарного коэффициента теплопередачи? Дано: Решение: Определяем тепловой поток конвекцией: Определяем тепловой поток излучением: - излучательная способность абсолютно черного тела. Суммарного коэффициента теплопередачи определяется по формуле: Задача 24 В пароводяном рекуперативном теплообменнике с площадью поверхности F вода нагревается насыщенным паром с абсолютным давлением р. Температура воды на входе , расход ее G = 1 кг/с. Определить конечную температуру нагрева воды , если коэффициент теплопередачи Дано: Р = 0,6 МПа Решение: 1. Уравнение теплового баланса: 2. Определяем температурный напор по формуле: где = 1 для прямоточной и противоточной схеме при давлении Р = 0,5 МПа температура греющего пара Предварительно принимаем конечную температуру С С Если , тогда 3. Расход теплоты на нагрев: кВт 4. Расход теплоты на нагрев: где: - теплоемкость воды. кВт Разность большая принимаем С кВт кВт Определяем разность найденных значений теплоты: Выбранная конечная температура верна:
|