Рефераты
 

Технологія і устаткування для переробки бензолу

p align="left"> Для підтримки температури в цій частині апарата передбачені штуцери Т и С для висновку смоли до выносному циркуляційного підігрівника і введення її в апарат після підігріву. Холодильник установлюється на фундамент за допомогою обичайки 2 і кільцева опори 1.

Вода і смола в экстракционной частини рухаються противотоком-смола зверху вниз, а вода -- знизу нагору. Смола, насичена нафталіном, виводиться через штуцер А в нижньої частини еліптичного днища 3 і надходить у смолоотводчик, а вода, промита від нафталіну, віддаляється через штуцер Н в верхньої частини нафталинопромывателя. Для зниження у воді концентрації солей (ціанідів, роданидов і ін.), що приводять до підвищення корозії апаратів бензольного відділення, у нафталинопромыватель подається вода із сепараторів бензольного відділення через штуцер В. Холодильник постачений монтажними і ремонтними люками М, Л, 3, штуцерами для СТОСІВ, воздушниками В, Я в охолодної і экстракционной частинах. Скрубери для уловлювання бензольних вуглеводнів. Скрубери для уловлювання бензольних вуглеводнів поглинальною олією при звичайних умовах являють собою вертикальні циліндричні апарати діаметром 4--6 м і висотою 34--45 м. Скрубери розрізняються по конструкції зрошувального пристрою, типу насадки, призначеної для створення необхідної поверхні кіт акта між газом і поглиначем (поглинальною олією) і наявності подскруббергюго збірника для прийому поглинача.

У коксохімічній промисловості велике поширення одержали два види насадки -- дерев'яна хордова і металева (плоскопараллельная, 2,-образна й ін.).

Дерев'яну хордову насадку виготовляють із соснових рейок товщиною 10--12 мм і висотою 100--120 мм. Рейки збирають у пакети. Відстань між рейками 20--25 мм. Конфігурація пакетів підбирається такий, щоб коло, складений з пакетів, перекривав усіх поперечних переріз скрубера. Рейки в пакетах скріплюються металевими шпильками. Питома поверхня дерев'яної хордової насадки 50 мг/мэ газу. Насадку укладають секціями по 20--25 кіл з відстанню між секціями до 0,5 м.

Опір проходу газу дорівнює 196--294 Па на 10 м висоти насадки. В останні роки значно збільшилися масштаби коксування і, отже, обсяг коксового газу, що підлягає переробці. Тому бензольні скрубери описаних конструкцій стають дуже громіздкими і малоефективними. Запропоновано нові конструкції скруберів, що відрізняються значним зниженням габаритів і більш ефективними пристроями. До них відносяться скрубери без насадочные з форсунками, із плоскопараллельной насадкою, із хвилястою, 2-образною насадкою, апарати тарілчастого типу.

На мал. 39 приведений скрубер із плоскопараллельной насадкою. У пакетах плоскопараллельной насадки металеві аркуші розташовуються вертикально па відстані 35--40 мм друг від друга. Рідина стікає по поверхні аркушів у виді тонкої плівки. Газ рухається противотоком до рідини між аркушами.

Скрубер являє собою циліндричну обичайку 3 із днищем 2. змонтовану па опорних балках !. Укладання насадки скруберів роблять окремими ярусами 5 висотою по 3 м. Кожен ярус має свою опору 6, виготовлену з чи швелерів двотаврових балок і куточків. Відстань між ярусами 0,3--0,4 м. Між ярусами насадки до корпуса приварюються ділильні конуси 4, призначені для напрямку рідини, що стікає по стінці корпуса і не взаємодіючої з газом, у центр насадки.

Насадка скрубера зрошується поглинальною олією, що за допомогою розподільного пристрою рівномірно розподіляється по поперечному перерізі скрубера. Скрубери діаметром 5,0--6,0 м зрошуються вісьма форсунками /, прикріпленими до труб //, що введені 8 скрубери через труби 10, приварені до кришки 12.

Коксовий газ входить у скрубер через штуцер Б, рухається по насадці знизу нагору і виходить у штуцер В. Поглинь гельное олію подаємося в колектор Г зрошувального пристрою, зрошує пи-садку і стікає зверху вниз, поглинає з газу бензольні вуглеводні і нафталін і виходить через штуцер А.

Для запобігання віднесення поглинальної олії з коксовим газом над форсунками зрошувального пристрою встановлюється насадка, що осушує, 9 висотою 300--700 мм із керамічних чи кілець кількох кругів дерев'яної хордової насадки. При русі газу па насадці, що осушує, поглинальна олія змочує насадку і відокремлюється від газу. Насадка, що осушує, укладається па опору, що складається з ґрат 8, опорних балок і куточків.

Скрубер має монтажні і ремонтні люки Д, переливний штуцер Ж, штуцер для введення пари Е, люк для обслуговування днища И.

Достоїнством плоскопараллельной насадки є низький гідравлічний опір, що дозволяє збільшити швидкість газу. Плівковий режим руху рідини і турбулентний режим руху газу забезпечують високий коефіцієнт массообмена. Застосування плоскопараллельной насадки дозволяє зменшити розміри скрубера. Дані експлуатації такого скрубера показали їхня надійність і стабільність у роботі; так, сталість опору свідчить про його низку «заеоряемости» в умовах експлуатації. Один такий скрубер може замінити 4--6 скруберів з дерев'яною хордовою насадкою,

Більш ефективним різновидом плоскопараллельной насадка є хвиляста. Абсорбер із хвилястою насадкою являє собою багатоступінчастий апарат, ступіні якого розділені перерозподільними пристроями. Апарат складається з декількох пакетів насадки і перерозподільних пристроїв. Верхня ступінь, зрошувана вихровою форсункою, має жалюзійний отбойник для зменшення брыз гоуноса поглинальної олії.

Дистиляційні колони. Виділення бензольних вуглеводнів з насиченої поглинальної олії виробляється в дистиляційних бензольних колонах конструкції Гипрококса продуктивністю до 180 м3 олії в годину.

У дистиляційній колоні бензольні вуглеводні відганяються гострою парою, з попередньо нагрітої олії.

В установках, з паровим підігрівом олії застосовуються колони діаметром 2,6--3,2 м з Ню тарілками, що мають ковпачки тунельного типу. В установках з вогневим підігрівом олії набули застосування колони, що мають 23 тарілки з ковпачками капсульного типу. Діаметр колони 2,6--2,8 м. Корпус колони виготовляється з двошарової сталі, тарілки і ковпачки -- зі сталі спеціальних марок.

Дистиляційна колона складається з вертикального циліндричного корпуса, що складає зі зварених обичайок, виготовлених зі сталевих аркушів товщиною 8 мм. Для відгону бензольних вуглеводнів з поглинальної олії при паровому нагріванні тарілки колони виконані зі штампованих сталевих жолобів, покладених на опорній балці. Желобы покривають ковпаками подовжньої форми з прорізами і зубцюватими краями, зануреними в поглинальну олію, що протікає по тарілці. Пари, що догори піднімаються, проходячи через щілини між ковпаками, попадають спочатку під ковпаки, а потім барботируют через шар олії і попадають на тарілковий простір.

Олія з верхньої тарілки на нижню надходить по переливних трубах, кінці якого для утворення гідрозатвора опушені в олію.

Штуцер для впуску обезбензоленного олії (після підігрівника) розташований над третьої, вважаючи зверху, тарілкою. На двох верхніх тарілках, не зрошуваних гарячою олією, що піднімаються пари звільняються від захопленої олії. Олія по переливних склянках тарілок стікає вниз. Назустріч олії йде потік парии, що десорбирует бензольним вуглеводням з олії і несе їх у верхню частину колони. Отже, нижня частина колони служить для звільнення олії від бензольних вуглеводнів і називається вичерпної.У верхній частині колони відбувається конденсація масляних пар, що у такий спосіб відокремлюються від більш легких бензольних вуглеводнів і водяних пар. Ця частина колони називається зміцнювальної, чи дефлегмацонной.

Гостра водяна пара надходить у нижню частину колони через розподільну занурену в олію трубу з отворами. Збезводнена олія з нижньої частини колони надходить самопливом у збірник гарячої олії, розташований під колоною, а з пего откачивается насосом через теплообмінну апаратуру в збірник обезбензоленного олії.

З верхньої частини колони приділяються пари сирого бензолу. У верхній частині колони передбачений штуцер для добору поглинальної олії на регенерацію й у нижній частині -- штуцер для пар регенерованої олії.

Швидкість пар у колоні звичайно знаходиться в межах 0,6--0,7 м/с. Рівень обезбензоленного олії в колоні підтримується автоматично.

Дистиляційні колони для відгону бензольних вуглеводнів з кам'яновугільної поглинальної олії при вогневому нагріванні в трубчастій печі мають тарілки з барботажнъши ковпаками капсульного типу. На мал. 40 показана дистиляційна колона з барботажным ковпаками капсульного типу. Зміцнювальна частина колони має 10 тарілок і вичерпна-- 13.

Циліндричний вертикальний корпус 6 колони звареної конструкції. До корпуса приварюються, эллиптичен киснув днище // і кришка 10. Корпус, днище і кришка виготовляються з двошарової сталі (Всгзт! і 08X13).' Внутрішні вузли колони, що стикаються з робітничим середовищем, виготовляються зі сталі 08X13.

Опора колони складається з обичайки 2, що приварюється до днища і спирається на кільце. Колона має дві технологічні частини: вичерпну і зміцнювальну. У зміцнювальній частині колони встановлюються сталеві розбірні тарілки 9 з ковпачками. Розбірна конструкція дозволяє вести монтаж і демонтаж через люки. У вичерпній частині встановлені двухсливные тарілки. Тарілки 5 мають по двох центральних зливальних порога, а тарс™хн. 4 -- два бічних. Кожна тарілка прикріплена шпильками до опорної рами й опорних балок. Раму приварюють до корпуса, а балки кріплять болтами до кронштейнів, привареним до рами.

Тарілка складається з підстави 12, парових патрубків 13, ковпачків 14. Ковпачки кріпляться до шпильок 15, що приварюється до патрубків.

Однакова глибина занурення ковпачків у рідину регулюється гайками 16. Для створення необхідного рівня Рідини тарілка постачена однієї чи двома зливальними перегородками 17, до яких гвинтами прикріплена регулювальна планка 18. На тарілці встановлюють один чи дві кишені 7 для прийому рідини з вышележащей тарілки. Зливальна труба 8 занурюється в кишеню, утвориться гидрозатзор, що не дозволяє парам прорватися через зливальну трубу. Рідина з нижньої тарілки зливається через кишені 3.

Колона постачена люками Б, У, 3, И, Л, М, Н, П, використовуваними при монтажі і ремонті колони.

Олія, нагріта в трубчастій печі до 180°С, надходить па верхню тарілку вичерпної частини колони по штуцері К- У нижню частину але штуцеру Про подається гостра пара. Олія стікає по тарілках зверху вниз, а гостра пара, піднімаючи знизу нагору, барботирует через шар рідини на тарілках і захоплює із собою пари бензольних вуглеводнів. Олія, звільнена від бензольних вуглеводнів, стікає в нижню частину колони і приділяється по штуцері А. Пари бензольних вуглеводнів, води і низкокипящие погони олії надходять у верхню, зміцнювальну частину колони, що зрошується флегмою (штуцер Г), у результаті чого відбувається часткова конденсація пар олії, підтримується задана температура пар, що залишають колону і, отже, їхній склад.

Для виділення вузької рідкої фракції, що складає з нафталіну і легких потопів олії, передбачаються штуцери на 17--21 тарілках зміцнювальної частини колони. Пари з нафталінової колони подають в основну колону через штуцер на 22-ю тарілку.

Поглинальна олія на регенерацію відбирають з 13-й тарілки, а пари регенерованої олії вводять під другу тарілку вичерпної частини колони. У дах колони уведений воздушник Е, використовуваний при пропарюванні колони. Для підтримки постійного рівня олії в нижній частині колони встановлюється автоматичний регулятор рівня.

Розділова колона застосовується для одержання двох, фракцій сирого бензолу: легкої, чи бензолу I, і важкої, чи бензолу II. Колона складається з двох частин: нижньої -- випарної і верхній -- ректифікаційної. У залежності від прийнятого способу підігріву, парової чи трубчастої печі, колони мають діаметр 2,2--1,6 м, колначковых тарілок 14--18 шт, висоту 13,7--18,1 м, швидкість пар у вільному перетині 0,5--0,6 м/с; колони виготовляють зі сталі. Пари бензольних вуглеводнів з дистиляційної колони, пройшовши дефлегматор, надходять у розділову колону, колона зрошується рефлюксом, за допомогою якого підтримується температура пар на виході близько 73°С. При цьому з колони виходять пари бензолу 1. У нижній частині розділової колони розташований підігрівник (він може бути выносным). Розділова колона обладнана сепаратором, у який приділяється частина рідини для відділення від води. Відділений продукт із сепаратора повертається в колону. Для остаточного підігріву обезбензоленного поглинальної олії перед дистиляцією широко використовуються парові підігрівники циліндричної форми з горизонтальної трубчастої, укладеної в сталевий кожух. Олія рухається по трубах, пара подають у межтрубное простір. Поверхня тепловіддачі 140 м2. В останні роки для остаточного нагрівання обезбензоленного олії перед дистиляцією набули застосування трубчасті печі з панельними беспламенными пальниками. Печі мають високий коефіцієнт корисної дії: 0,80--0,85 проти 0,80--0,78 у печей з полум'яними пальниками (мал. 41). Поверхня нагрівання трубчастої печі виконана у виді змійовиків, складених із труб, по яких прокачивается продукт, що нагрівається. Труби з'єднані спеціальними двійниками. Вертикальні випромінюючі стіни печі зібрані з чотирьох рядів панельних пальників беспламенного горіння, зібраних на болтах; стіни кріплять до каркаса.

Пальник являє собою панель розміром 500X500X244 мм і складається з ежектора, розподільної камери і керамічних призм. Паливний газ під тиском надходить до сопел ежекторів пальників, подсасывает атмосферне повітря, змішується й у виді газоповітряної суміші подається в розподільну камеру пальника, а з її -- у тунелі. Так. як згоряння палива відбувається в самих тунелях, то поверхня пальника розжарюється без еидкмого полум'я. Інтенсивність тепловіддачі від випромінюючих стін у 2--3 рази більше, ніж від смолоскипа. Газ у пальники через кілька колекторів. Коефіцієнт надлишку повітря повинний бути в межах 1,02--1,10.

Між вертикальними випромінюючими стінами міститься трубчастий екран на відстані 600--1000 мм від панелей пальників. Основна частина тепла передається трубчастому екрану радіацією від поверхні пальників, випромінюваних стін і деяка кількість від випромінювання продуктів згоряння і конвекцією.

Вище цього дворядного екрана розташовується конвективная поверхня, що одержує тепло конвекцією від продуктів згоряння. Поглинальна олія надходить у труби конвективной частини, а потім направляється в радіальну частину і далі надходить у дистиляційну колону. Трубчаста піч відрізняється компактністю і меншою витратою металу і кераміки в порівнянні з іншими трубчастими печами; має високу рівномірність теплового навантаження труб радіанного екрана, що приводить до високої ефективності теплопередачі і зниженню температури димових газів, що залишають радіальну частину пені. У цих печах можливе використання конвекційної частини печі для нагрівання олії перед регенератором, а також для перегріву пари, необхідного для технологічних нестатків.

Регенератор поглинальної олії -- вертикальний циліндричний апарат діаметром 2800 мм, обладнаний у нижній частині висувними трубчатками для нагрівання олії глухою парою. Під ними розташований пристрій для подачі в регенератор гострої пари. Не відігнана олія і нелетучі полімери приділяються з нижньої частини регенератора.

Паромасляные теплообмінники (дефлегматори) служать для виділення із суміші пар, що надходять з бензольної колони, высококипящих частин і конденсації можливо більшої кількості водяних пар. Найбільш сучасними є чотирьох- і трехсекционные трубчасті дефлегматори системи Гипрококса.

Конденсатори-холодильники для сирого бензолу складаються з трубчаток із загальною поверхнею тепловіддачі ~250 мг. Пари бензольних вуглеводнів і пари води з роздягнули тельной колони надходять у межтрубное простір апарата і прохолоджуються технічною водою, що рухається по трубах противотоком. Температура води в трубахсоставляет 25--45°С.

Холодильники для обезбензоленного олії. Для остаточного охолодження обезбснзолепного поглинальної олії можуть застосовуватися зрошувальні повітряно-водяні холодильники, зібрані з чавунних трехвитковых радіаторів, з'єднаних у секції; кожухотрубные холодильники; апарати повітряного охолодження АВО.

Перевагами апаратів повітряного охолодження є їхня компактність, скорочення зразкове на 80% споживання води, відсутність необхідності будівництва градирень для охолодження води, здійснення захисту навколишньої території від забруднень.

На мал. 42 приведений апарат повітряного охолодження з горизонтальним розташуванням труб, у якому рідина, що підлягає охолодженню, рухається по трубах і прохолоджується шляхом обдува труб повітрям.

Апарат складається з трьох секцій 5 з горизонтально розташованими трубами. Кінці труб кожної секції розвальцьовані в двох трубних ґратах прямокутної форми. До трубних ґрат кріпляться кришки 4, 6 зі штуцерами Лий для введення і висновку охолоджуваної рідини. Трубні секції монтуються на рамі 7, що спирається на опорні стійки 8. Сівши кріпляться до рам жорстко тільки з одного кінця, що забезпечує вільне теплове розширення елементів секції при нагріванні. До рами і стійок кріпляться усмоктувальний колектор / і дифузор 3 вентилятори. На Окремому фундаменті і рамі 12 змонтований осьовий вентилятор, робоче колесо 9 якого типу ЦАГИ насаджено на вертикальний вал конічного редуктора 13. Вентилятор приводиться в дію електродвигуном 10, що з'єднується з редуктором муфтою II.

Вентилятор проганяє повітря через межтрубное простір секцій, за рахунок чого прохолоджується рідина в трубах. Для зниження температури повітря в літній період його воложать. Вода в увлажнитель 2 подається через штуцер В. У зимовий період апарат може працювати з відключеним вентилятором, тобто продукт у трубах прохолоджується за рахунок природної конвекції.

Технологічний режим витягу бензолу і нафталіну з коксового газу, усунення його порушень, шляху зниження витрати поглинальної олії й енергетичних витрат при виробництві сирого бензолу

Уловлювання бензолу і нафталіну з коксового газу і виділення їх з поглинальної олії за своїм характером є типовими массообменными процесами, суть яких складається в абсорбції бензольних вуглеводнів з коксового газу і наступної десорбції їхній з поглинальної олії. Суть процесу полягає в утворенні фізико-хімічних зв'язків між молекулами бензольних вуглеводнів і поглинальної олії. Міцність цих зв'язків визначається концентрацією бензольних вуглеводнів у паровий (газової) і рідкої (поглинальна олія) фазах, температурою і тиском: чим вище температура, тим більше концентрація (парціальний тиск) бензольних вуглеводнів у паровий (газової) фазі, тим менше вона в рідкій фазі, (поглинальній олії); чим вище тиск, тим більше концентрація бензольних вуглеводнів у рідкій фазі. Ця обставина робить процес оборотним. У визначених умовах температури і тиску йде процес поглинання, уловлювання бензолу, процес абсорбції, зміна цих умова-підвищення температури, зниження тиску -- змінює напрямок процесу, відбувається виділення, випар бензолу, процес десорбції. Таким чином, кожному значенню температури, тиску відповідає своя рівноважна концентрація бензольних вуглеводнів у паровій і рідкій фазах, і зрушення цієї рівноваги і ту чи іншу сторону може бути досягнуть зміною чи температури тиску в зоні реакції. На цьому заснований процес уловлювання бензольних вуглеводнів (мінімальна температура максимальний тиск), виділення їх з поглинальної олії (максимальна температура, мінімальний тиск).

Хід процесу визначається, крім тиску і температури, поверхнею контакту рідкої і парової фаз, концентрацією бензольних вуглеводнів у газі, що очищається, і олії, що надходить на уловлювання, концентрацією бензолу в олії, що надходить на десорбцію, і в парах дистиляційної колони.

Зазначені положення визначають технологічний режим кінцевого охолодження газу, уловлювання бензолу і нафталіну, виділення бензолу і нафталіну з поглинальної олії.

Як указувалося вище, оптимальною температурою уловлювання бензолу і нафталіну є температура 25--30°С, при якій забезпечуються достатня рухливість поглинальної олії, відносно низька його в'язкість, найкращі умови для змочування всієї поверхні насадки в бензольних скруберах.

Тому що газ у бензольне відділення надходить після сульфатного відділення з температурою 55--60°С и містить при цьому 110--120 г/м3 водяних пар, то при його охолодженні до 25°С необхідно скондесувати 85--95 г/м3 водяних пар, приблизно 1 г/м3 нафталіну, знизити загальний зміст тепла газу приблизно на 376--480 кдж/мэ. Для цього необхідно на кожні 1000 м3/год гази подавати в кінцевий холодильник 6--6,5 м3 охолодної води з температурою 23--25°С, з огляду на нагрівши в холодильнику до 40--45°С. Для забезпечення необхідних умов контакту води з газом швидкість газу в газовій частині холодильника повинна складати 4--4,5 м/с, а обсяг газової частини -- 6 м3/год на 1000 м газу.

Таким чином, на газовий потік 100 тис, м3/год (годинна кількість газу двох батарей з обсягом камер 41,6 м3 і 65 печами в кожній) необхідно мати один холодильник з обсягом газової частини близько 600 м3, подавати на охолодження газу 600--650 м3/год води з температурою 23--25°С, у смолопромыватель -- 8--9 т смоли в годину з температурою 70--80°З, забезпечити відстій води, охолодження відстояної води (на градирні при відкритому чи циклі в кожухотрубных холодильниках при закритому циклі) від 40--45 до 23-- 25°С.

Основними порушеннями режиму кінцевого охолодження газу можуть бути: відкладення нафталіну на полках газової частини кінцевого холодильника, у стопці відводу газу нз холодильника й і газопроводі до бензольних скруберів; улучення великих шматків нафталіну в гідрозатвор, через який виходить охолоджена вода з газової частини холодильника (при выносном смолопромывателе) чи в центральну трубу, по якій вода з газової частини стікає в нижню экстракционную частина кінцевого холодильника. Ознаками такого порушення є ріст опору холодильника проходу газу понад звичайний 0,98-- 0,147 кпа. При відкладенні нафталіну на полках, у чи стояку газопроводі перед скруберами опір наростає поступово, з плин декількох доби, тижнів. При забиванні лінії стоку охолодної води опір зростає дуже швидко, протягом декількох хвилин, тому що зменшення стоку води приводить до заповнення нею газової частини холодильника до штуцера входу газу і потім до заповнення газопроводу від сатуратора до кінцевого холодильника.

При повільному наростанні опору спочатку промивають протягом декількох годин стояк кінцевого холодильника і газопровід до бензольних скруберів гарячою олією, подаваною насосом у форсунку, розташовану з верхньої частини стояка. Якщо опір холодильника не знижується, припиняють подачу охолодної води в холодильник і подають гостра пара доти, поки температура газу після холодильника не досягне 70--80°С. При цій температурі практично весь нафталін, що відклався па полках, сублімується і несеться з газом у бензольні скрубери, де уловлюється поглинальною олією. Звичайно пропарювання ведуть протягом 5--6 ч, потім подачу пари припиняють і після охолодження газу на виході з холодильника до 50--60СС поступово починають подавати на холодильник охолодну воду.

Варто мати на увазі, що при подачі в розігрітий послу пропарювання холодильник відразу великої кількості охолодної коди в холодильнику може утворитися вакуум у результаті швидкого охолодження газу і газова частина може бути зім'ята чи зруйнована. Особливо часто таке явище відбувається, якщо під час пропарювання холодильник відключають і по воді, і по газі (на виході газу) і пропарювання ведуть при закритої воздушке. Варто вказати, що після пропарювання найбільш ймовірне забивання чи гідрозатвора центральної труби шматками розплавленого нафталіну, тому протягом 1--2 змін після пропарювання необхідний особливо ретельний контроль за стоком охолодної води з холодильника і його опором. З появою ознак забивання (швидкий ріст опору холодильника) подачу води припиняють і подають пара в чи гідрозатвор у центральну трубу для стоку води. В особливо складних випадках, якщо пропарювання не дає ефекту, приходиться розкривати гідрозатвор і очищати його механічним шляхом. При дотриманні заданого режиму пропарювання холодильника потрібно раз у 3--6 мес. Якщо приходиться пропарку робити, частіше це значить, що на холодильник надходить менше розрахункової кількості охолодної води або вода не цілком очищена від нафталіну. У цьому випадку необхідно перевірити, чи достатні кількість і температура смоли, що надходить на екстракцію, і ефективність роботи смрлопромывателя по змісту нафталіну у воді до і після пего, а також відповідність кількості охолодної в;;ы заданому.

Основними показниками технологічного режиму уловлювання бензолу і нафталіну є температури газу й олії, що надходять на уловлювання, їхня кількість, зміст бензолу в газі й олії перед уловлюванням і після нього, опір бензольних скруберів. Виходячи з приведених вище даних оптимальними є наступні параметри режиму уловлювання:

Приведені показники технологічного режиму забезпечують досить повний витяг з га та бензольних вуглеводнів до залишкового змісту 2--3 г/и3. При існуючих схемах витяг бензолу до більш низького змісту його в газі (наприклад, 0,1 -- 0,5 г/м3) технічно й економічно недоцільно. У разі потреби більш повного витягу процес повинний вестися під тиском 15--30 МП а чи з застосуванням низьких температур (виморожуванів). Так, зокрема, здійснюється доочищення газу при використанні його для синтезу аміаку.

Найбільш характерними відхиленнями технологічного режиму, що ведуть до погіршення витягу бензольних вуглеводнів з газу, є: підвищена температура чи газу олії; підвищений зміст бензолу в олії, що надходить на уловлювання; підвищене опорі бензольних скруберів, що веде до збільшення швидкості газу в живому перетині скрубера, а головне, до зменшення поверхні контакту між газом і олією; недостатня кількість олії, подавана на зрошення скруберів, чи погіршення його якості.

Температура газу, що надходить на скрубери, знижується до норми шляхом приведення до заданого режиму охолодження газу в кінцевому холодильнику, що може бути досягнуто зниженням температури охолодної води за рахунок поліпшення її розподілу на градирні або (при замкнутому циклі) включенням додаткових чи холодильників очищенням поверхонь теплообміну діючих кожухотрубных холодильників; збільшенням кількості води, подаваної на кінцеве охолодження газу; поліпшенням контакту між водою і газом шляхом пропарювання кінцевого холодильника, якщо відзначений ріст його опору. Визначальної в температурному режимі уловлювання є температура газу; температура олії повинна підтримуватися на 2--3°С вище температури газу щоб уникнути конденсації водяних пар з газу при зустрічі з холодним олією. Тому що газ, проходячи послідовно два -- три скрубери, улітку нагрівається, а узимку прохолоджується, а олія завжди прохолоджується, те різниця температур газу й олії звичайно улітку встановлюється 2--3°С, а узимку 7-- 8°С. В даний час запропоновано подавати на перший але ходу газу скрубер частина найбільш нагрітої олії, що надходить на перший по ходу олії скрубер. Це дозволить скоротити різницю температур газу й олії в зимовий час і трохи знизити середню температурячи уловлювання. Зниження температури олії досягається або збільшенням чи кількості зниженням температури води; охолодної олія в зрошувальних чи кожухотрубных холодильниках, або збільшенням поверхні теплообміну шляхів включення резервних чи очищення діючих холодильників, або при наявності апаратів повітряного охолодження олії збільшенням кількості подаваемогона його повітря.

Підвищення опору бензольних скруберів веде не тільки до збільшення швидкості газу і погіршенню умов його контакту з олією, але й у більшості випадків є ознакою утворенні відкладень на насадці, тобто зменшення поверхні контакту газу й олії. Зниження опору досягається промиванням стояків скруберів гарячою олією, якщо ці відкладення утворилися в стояках, або промиванням розчинником насадки бензольних скруберів. У цьому випадку скрубер виключається, але олії і по газі і протягом декількох доби промивається спеціально підібраним гарячим розчинником. Украй важливе значення в цьому випадку має вибір розчинника. При роботі на нафтовій олії на насадці відкладається шлам, що утворився внаслідок осмоления і полімеризації олії. Гарний ефект може бути отриманий при промиванні гарячою смолою, сульфоналом. При роботі на кам'яновугільній олії на насадці найчастіше відкладаються полімери, высококипящие продукти, що містяться в смолі (антрацен, карбазол, аненафтен і ін.); найбільш придатним у цьому випадку розчинником є смола, що скондесувалася в первинних холодильниках, нафталінова фракція смоли після витягу з її нафталіну, сольвент цеху ректифікації и т.п. Головними умовами ефективного промивання є досить висока температура розчинника (80--90°С) і висока щільність зрошення, у всякому разі не менша, чим при подачі олії на уловлювання бензолу. Недостатня кількість олії на уловлювання бензолу визначається підвищенням змісту бензолу в насиченій олії у випадку, якщо температурний режим уловлювання не мінявся. Збільшення концентрації бензолу в насиченій олії понад 2,5% для кам'яновугільного і 2% для нафтової олії свідчить про недостатню кількість подаваної чи олії те через збільшення кількості чи газу змісту в ньому бензолу, чи те через підвищений зміст бензолу в олії, що надходить на уловлювання. Разом з тим збільшення кількості подаваної олії може у визначеній мері компенсувати вище мені температури уловлювання. Так, збільшення температури уловлювання від 25 до 35°С вимагає збільшення витрати олії від 1,8--1,9 до 2,5--2,6 м3/1000 м3 газу. Тому бажано працювати не на максимальному, а на оптимальній витраті олії для того, щоб зміною витрати , олії мати можливість регулювати режим уловлювання бензолу. Технологічний режим дистиляції бензолу визначається його основною задачею -- максимальним витягом бензолу і нафталіну з газу. Варто мати на увазі необхідність одержання сирого бензолу необхідної якості при мінімальних утратах поглинальної олії і мінімальних енергетичних витрат. Виходячи з них, визначають основні показники технологічного режиму. Нижче приведений технологічний режим дистиляції бензолу при нагріванні олії в підігрівнику (I) і трубчастої печі (П):

Приведений вище режим повинний забезпечити одержання бензолу БС зі змістом бензольних вуглеводнів, що википають до 180°С, не менш 90% чи при одержанні двох бензолів: бензолу БС-1 зі змістом бензольних вуглеводнів, що википають до 150°С, не менш 93--95% і бензолу БС-11, що википає в інтервалі 150--200°С. При цьому зміст бензолу в обезбепзоленном олії не повинне перевищувати 0,3--0,4% при роботі на кам'яновугільному і 0,2--0,3% при роботі на нафтовій олії.

Найбільш характерними відхиленнями технологічного режиму від заданого є:

обводнювання поелтительного олії, що надходить у теплообмінну апаратуру і дистиляційну колону; ознаками цього є: спад температури олії після підігрівників, підвищення тиску в нижній частині дистиляційної колони; причиною обводнювання олії може бути порушення режимного співвідношення температур газу й олії при уловлюванні (температура газу вище температури олії) і як наслідок конденсація в олію водяних пар з газу;

підвищений зміст бензолу в обезбензоленном олії через низьку температуру олії перед дистиляційною чи колоною недостатньої кількості гострої пари, подаваного в колону; можливими причинами такого явища можуть бути порушення щільності труб у масляних "теплообмінниках і змішання насиченого й обез-бензоленного олій; ознакою недостатньої кількості пари, подаваного в колону, є значна (більш 3--5°С) різниця температур олії, що надходить у колону й іде з її; зниження змісту в сирому бензолі відгону до 180°С нижче 90% чи в БС-1 нижче 93--95% відгону до 150°С, З появою ознак обводнювання олії необхідно підвищити температуру олії, подаваного на скрубери, чи знизити температуру газу, скоротити подачу гострої пари в колону до нормалізації температурного режиму уловлювання, не допускаючи підвищення тиску в колоні.

При збільшенні змісту бензолу в обезбензолснном олії: 1) відновлюють температурний режим нагрівання олії перед колоною; 2) збільшують витрата па ра в колону до досягнення різниці температур вхідного і вихідного олії 3--5°С; 3) перевіряють зміст бензолу в обезбензолснном олії після колони і кожного теплообмінника і виключають несправний.

При зниженні відгону бензолу до 180°С зменшують температуру після дефлегматора до 88- 89°С доти, поки не буде отриманий бензол необхідної якості; при зниженні відгону до 150°С в першому бензолі збільшують кількість рефлкжса, подаваного у верхню частину розділової колони, і знижують температуру пар після її до 71--72°С або температуру нагрівання на підігрівниках у нижній частині колони.

Варто особливо підкреслити тісний взаємозв'язок показників технологічного режиму бснзольно-скрубберного відділення, необхідність обліку всіх наслідків їхнього порушення. Наприклад, погіршився відстій води циклу кінцевого охолодження від смоли і нафталіну. Вода, забруднена смолою, надходить на чи градирню в кожухотрубные холодильники, смола відкладається у форсунках водорозподільних пристроїв чи градирні па поверхні трубок холодильників, погіршується охолодження води, підвищується її температура. Слідом за цим підвищується температура газу після кінцевого холодильника, починається конденсація масті водяних пар в олію, олію обводнюється, знижується його температура перед колоною, збільшується кількість водяних пар перед дефлегматором, росте температура пар, після чого зменшується нижче 90% відгону бензолу до 180ПС, одночасно підвищується зміст бензолу в обезбензоленном олії. У бензольних скруберах тепер не тільки підвищена температура уловлювання через погане охолодження газу в кінцевому холодильнику, але н підвищений зміст бензолу в ненасиченій олії. У цьому випадку варто було б збільшити подачу олії на скрубери, однак зробити цього не можна, тому що подача на підігрівники ще більшої кількості обводненої олії ще більш ускладнить режим роботи бензольної колони, підвищить зміст бензолу в, обезбензоленом олії. Приходиться піднімати температуру олії для припинення його обводнювання, підвищуючи ще більше температуру уловлювання, а виходить, і втрати бензольних вуглеводнів зі зворотним газом. І тільки після відновлення нормального режиму дистиляції вживають заходів по зниженню температури води циклу кінцевого охолодження, зниження температури газу і відновлення нормального режиму уловлювання.

Порівнюючи показники технологічного режиму, можна зробити висновок про те, що при нормальному режимі найбільш економічними з погляду витрати енергоресурсів на уловлювання 1 т бензолу є схеми з вогневим підігрівом поглинальної олії і застосуванням кам'яновугільної олії. Кількість цієї олії, необхідне для уловлювання бензолу з 1000 м3 газу в годину, на 20--25% менше, ямі нафтового, відповідно на 20--25% менше витрати електроенергії на його транспортування і на 15--20% менше витрату пари на його нагрівши. Застосування трубчастої печі для нагрівання олії майже вдвічі знижує витрата гострої пари на дистиляцію бензолу, більш повно використовується тепло олії, поїло колони (у масляних теплообмінниках насичене бензолом олія нагрівається на 80--90 замість 30°С), менше витрата охолодної води. Таким чином, основним шляхом зниження енерговитрат при виробництві бензолу є застосування кам'яновугільного поглинача і вогневого підігріву олії перед колоною, Разом з тим витрата свіжої кам'яновугільної олії на 1 т бензолу в півтора разу більше, ніж нафтового, тому задача зниження витрати свіжої кам'яновугільної олії дуже важлива. Рішення її досягається зменшенням утрат легень ногонов олії із сирим бензолом за рахунок підвищенні в бензолі відгону до 180°С до 92--93%, своєчасної й ефективної регенерації олії, зниження віднесення олії зворотним газом за рахунок підтримки режимного опору скруберів і швидкості в них газу, а також за рахунок зниження змісту у свіжій олії высококипящих з'єднань.

ТЕХНОЛОГІЯ Й УСТАТКУВАННЯ ПРОЦЕСУ ПЕРЕРОБКИ ФРАКЦІЇ КАМ'ЯНОВУГІЛЬНОЇ СМОЛИ

Переробка фракцій кам'яновугільної смоли має на меті виділення з цих фракцій у виді продуктів з досить високою концентрацією основної речовини нафталіну, антрацену, сумішей высококипящих гомологів піридину і фенолів, а також одержання технічних мастил і композицій з пеку й олій різного призначення. У залежності від асортименту заданої продукції технологічні схеми переробки окремих фракцій можуть змінюватися, передбачати витяг із фракцій усіх чи частини вищезгаданих продуктів, одержання тих чи інших технічних чи мастил композицій цих олій з пеком. Однак технологія й устаткування процесів переробки фракцій у сучасних смолоперерабатывающих цехах повинні забезпечувати здійснення всіх перерахованих вище задач.

Принципова технологічна схема переробки фракцій кам'яновугільної смоли повинна передбачати виконання наступних операцій: кристалізацію антраценової і нафталінової фракцій з виділенням із кристалізованого продукту антрацену і нафталіну; хімічне очищення важкої, фенольної і нафталіновий (після виділення з її нафталіну) фракцій від фенолів і піридинових основ з одержанням із продуктів очищення концентрованого розчину фенолятів натрію і важких піридинових основ: змішання хімічно очищених фракцій з откристаллизованной антраценовою фракцією; змішання антраценової фракції з пеком іноді з додаванням у цю суміш хімічно очищених поглинальної і нафталінової фракцій, пекових дистилятів і ін.

Окремі фракції, наприклад антраценова 11, фенольная, можуть бути товарними продуктами і не піддаватися в цеху подальшій переробці. Легка фракція з випарників I і II ступіней і після конденсатора-холодильника поєднуються разом і у виді легкої олії передаються на переробку в цех ректифікації. Важка фракція після хімічного очищення також є товарним продуктом, і частина її чи уся фракція використовується як поглинальну олію для уловлювання бензольних вуглеводнів.

Як правило, кінцевими продуктами процесу переробки фракцій є: технічний нафталін з концентрацією основної речовини 97--58%, сирий антрацен з концентрацією основної речовини 2б--<30% (іноді 40%), феноляти натрію з концентрацією основної речовини 21-- 22%, важкі піридинові підстави з концентрацією основної речовини 25--30%; технічні мастила: поглинальне, для просочення деревини, виробництва сажі, обмасливания шихти; композиції пеку з оліями, дорожні дьогті, кам'яновугільні лаки, препаровані смоли. Усі технічні мастила, крім поглинального, так само як і всі композиції, є продуктами змішання підготовлених фракцій між собою чи цими фракціями з пеком у заданих співвідношеннях, що забезпечують одержання кінцевих продуктів, що задовольняють вимогам відповідних Дст і технічних умов.

Технологічні схеми переробки фракцій кам'яновугільної смоли

Технологічна схема переробки нафталінової фракції повинна забезпечити максимальний витяг з її нафталіну й одержання нафталіну з досить високим змістом основної речовини з мінімальними забрудненнями його домішками, особливо домішками тионафтена (нафталін, у якому одна ВІН група в ядрі замінена атомом сірки).

Страницы: 1, 2, 3, 4, 5


© 2010 BANKS OF РЕФЕРАТ