Рефераты
 

Установки ожижения и разделения газовых смесей

Установки ожижения и разделения газовых смесей

21

Санкт-Петербургский государственный Университет

низкотемпературных и пищевых технологий.

Кафедра криогенной техники.

Курсовой проект

по дисциплине «Установки ожижения и разделения газовых смесей»

Расчёт и проектирование установки

для получения жидкого кислорода.

Работу выполнил

студент 452 группы

Денисов Сергей.

Работу принял

Пахомов О. В.

Санкт - Петербург 2003 год.

Оглавление.

Задание на расчёт…………………………………………………………………..3

Выбор типа установки и его обоснование……………………………………3

Краткое описание установки…………………………………………………..3

Общие энергетические и материальные балансы……………………….……4

Расчёт узловых точек установки…………………………….…………………4

Расчёт основного теплообменника…………………………….………………7

Расчёт блока очистки……………………………………………….…………..17

Определение общих энергетических затрат установки…………………..…..20

Расчёт процесса ректификации…………………………………….…………..20

Расчёт конденсатора - испарителя…………………………………………….20

Подбор оборудования…………………………………………………..………21

Список литературы……………………………………………..………………22

Задание на расчёт.

Рассчитать и спроектировать установку для получения газообразного кислорода с чистотой 99,5 %, производительностью 320 м3/ч, расположенную в городе Владивостоке.

Выбор типа установки и его обоснование.

В качестве прототипа выбираем установку К - 0,4, т. к. установка предназначена для получения жидкого и газообразного кислорода чистотой 99,5 %, а также жидкого азота. Также установка имеет относительно несложную схему.

2. Краткое описание работы установки.

Воздух из окружающей среды, имеющий параметры Т = 300 К и Р = 0,1 МПа, поступает в компрессорную станцию в точке 1. В компрессоре он сжимается до давления 4,5 МПа и охлаждается в водяной ванне до температуры 310 К. Повышение температуры обусловлено потерями от несовершенства системы охлаждения. После сжатия в компрессоре воздух направляется в теплообменник - ожижитель, где охлаждается до температуры 275 К, в результате чего большая часть содержащейся в ней влаги конденсируется и поступает в отделитель жидкости, откуда выводится в окружающую среду. После теплообменника - ожижителя сжатый воздух поступает в блок комплексной очистки и осушки, где происходит его окончательная очистка от содержащихся в нём влаги и СО2 . В результате прохождения через блок очистки воздух нагревается до температуры 280 К. После этого поток сжатого воздуха направляется в основной теплообменник, где охлаждается до температуры начала дросселирования, затем дросселируется до давления Р = 0,65 МПа. В основном теплообменнике поток разделяется. Часть его выводится из аппарата и поступает в детандер, где расширяется до давления Р = 0,65 МПа и поступает в нижнюю часть нижней колонны.Поток из дросселя поступает в середину нижней колонны. Начинается процесс ректификации. Кубовая жидкость (поток R, содержание N2 равно 68%) из низа нижней колонны поступает в переохладитель, где переохлаждается на 5 К , затем дросселируется до давления 0,13 МПа и поступает в середину верхней колонны. Азотная флегма (поток D, концентрация N2 равна 97%) забирается из верхней части нижней колонны, пропускается через переохладитель, где также охлаждается на 5К, затем дросселируется до давления 0,13 МПа и поступает в верхнюю часть верхней колонны. В верхней колонне происходит окончательная ректификация, внизу верхней колонны собирается жидкий кислород, откуда он направляется в переохладитель, где переохлаждается на 8 - 10 К. Далее поток кислорода направляется в жидкостной насос, где его давление поднимается до 10 МПа, и обратным потоком направляется в основной теплообменник. Затем он направляется в теплообменник - ожижитель, откуда выходит к потребителю с температурой 295 К. Азот из верхней части колонны последовательно проходит обратным потоком переохладитель азотной флегмы и кубовой жидкости, оснновной теплообменник и теплообменник - ожижитель. На выходе из теплообменника - ожижителя азот будет иметь температуру 295 К.

3. Общие энергетические и материальные балансы.

V = K + A

0,79V = 0,005K + 0,97A

МVДi1B - 2B + VдетhадзадМ = МVq3 + Мк KДi2K - 3K + VДi3В - 4В М

М - молярная масса воздуха.

Мк - молярная масса кислорода.

Принимаем V = 1 моль

К + А = 1

К = 1 - А

0,79 = 0,005(1 - А) + 0,97А

А = 0,813

К = 1 - 0,813 = 0,187

Определяем теоретическую производительнсть компрессора.

(1/0,187) = х/320 => х = 320/0,187 = 1711 м3/ч = 2207,5 кг/ч

4. Расчёт узловых точек установки

Принимаем:

Давление воздуха на входе в компрессор……………………….

Давление воздуха на выходе из компрессора……………………Рвыхк = 4,5 МПА

Температура воздуха на входе в компрессор…..………………...

Температура воздуха на выходе из компрессора…….…………..

Температура воздуха на выходе из теплообменника - ожижителя…..

Температура воздуха на выходе из блока очистки…………………

Давление в верхней колонне……………………………………..

Давление в нижней колонне………………………………………

Концентрация азота в кубовой жидкости ………………………..

Концентрация азота в азотной флегме……………………………

Температурный перепад азотной флегмы и кубовой жидкости при прохождении

через переохладитель…………..……………………………..

Температура кубовой жидкости…………………………………….

Температура азотной флегмы………………………………………

Температура отходящего азота…………………………………….

Температура жидкого кислорода…………………………………..

Разность температур на тёплом конце теплообменника - ожижителя………………………………………..…………….

Температура азота на выходе из установки………………….

Температурный перепад кислорода …………………………ДТ1К - 2К = 10 К

На начальной стадии расчёта принимаем:

Составляем балансы теплообменных аппаратов:

а) Баланс теплообменника - ожижителя.

КСр кДТ4К - 5К + АСрАДТ3А - 4А = VCpvДT2В - 3В

б) Балансы переохладителя:

находим из номограммы для смеси азот - кислород.

в) Баланс переохладителя кислорода.

КCpK ДT1К - 2К = RCpR ДT2R - 3R

Принимаем ДT1К - 2К = 10 К

ДT2R - 3R = 0,128*1,686*10/6,621*1,448 = 2,4

Т3R = Т2R + ДT2R - 3R = 74 + 2,4 = 76,4 К

i3R = 998,2

г) Баланс основного теплообменнка.

Для определения параметров в точках 3А и 4К разобьём основной теплообменник на 2 трёхпоточных теплообменника:

Истинное значение Vдет вычислим из баланса установки:

Vдет = [VMq3 + KMkДi2K - 3K + VMДi4B - 3B - VMДi1B - 2B]/Mhадзад = [1*29*8 + 0,187*32*(352,8 - 349,9) + 1*29*(522,32 - 516,8) - 1*29*(563,82 - 553,75)]/29*(394,5 - 367,5)*0,7 = 0,2

Vдет = 0,2V = 0,2*1711 = 342 м3/ч

Составляем балансы этих теплообменников:

I VCpVДT4B - 6B = KCpKДT3K' - 4K + ACpAДT2A' - 3A

II (V - Vд )CpVДT6B-5B = KCpKДT3K - 3K' + ACpAДT2A' - 2A

Добавим к ним баланс теплообменника - ожижителя. Получим систему из 3 уравнений.

III КСр кДТ4К - 5К + АСрАДТ3А - 4А = VCpvДT2В - 3В

Вычтем уравнение II из уравнения I:

VCpVДT4B - 6B - (V - Vд )CpVДT6B-5B = KCpKДT3K' - 4K - KCpKДT3K - 3K' + ACpAДT2A' - 3A - ACpAДT2A' - 2A

Получаем систему из двух уравнений:

I VCpV (T4B - 2T6B + T5B ) + VдCpV(T6B - T5B) = KCpK(T4K - T3K) + ACpAДT3A - 2A

II КСр кДТ4К - 5К + АСрАДТ3А - 4А = VCpvДT2В - 3В

I 1*1,012(280 - 2*173 + 138) + 0,387*1,093(173 - 138) = 0,128*1,831(T4K - 88) +0,872*1,048(T3А-85)

II 1*1,012*(310 - 275) = 0,128*1,093(295 - T4K) + 0,872*1,041(295 - T3А)

T4K = 248,4 К

T3А = 197,7 К

Для удобства расчёта полученные данные по давлениям, температурам и энтальпиям в узловых точках сведём в таблицу:

5

1R

2R

3R

i, кДж/

кг

553,7

563,8

516,8

522,3

319,2

319,2

419,1

367,5

1350

1131,2

1243

Р, МПа

0,1

4,5

4,5

4,5

4,5

0,65

4,5

4,5

0,65

0,65

0,65

Т, К

300

310

275

280

138

80

188

125

79

74

76,4

1D

2D

i, кДж/

кг

1015

2465

354,3

349,9

352,8

467,9

519,5

328,3

333,5

454,6

553,

Р, МПа

0,65

0,65

0,13

0,12

10

10

10

0,13

0,13

0,13

0,13

Т, К

79

74

93

84

88

248,4

295

80

85

197,7

295

ПРИМЕЧАНИЕ.

1. Значения энтальпий для точек 1R, 2R, 3R , 1D, 2D взяты из номограммы Т - i - P - x - y для смеси азот - кислород.

2. Прочие значения энтальпий взяты из [2].

5. Расчёт основного теплообменника.

Ввиду сложности конструкции теплообменного аппарата разобьём его на 4 двухпоточных теплообменника.

Истинное значение Vдет вычислим из баланса установки:

Vдет = [VMq3 + KMkДi2K - 3K + VMДi4B - 3B - VMДi1B - 2B]/Mhадзад = [1*29*8 + 0,128*32*(352,8 - 349,9) + 1*29*(522,32 - 516,8) - 1*29*(563,82 - 553,75)]/29*(394,5 - 367,5)*0,7 = 0,2

Vдет = 0,2V = 0,2* = 342,2 м3/ч

Составляем балансы каждого из четырёх теплообменников:

I VA (i4B - i1) + Vq3 = A(i3A - i3)

II VK (i4B - i2) + Vq3 = K(i4K - i4)

III (VA - Vда)(i1 - i5B) + Vq3 = A(i3 - i2A)

IV (VК - Vдк)(i2 - i5B) + Vq3 = К(i4 - i2К)

Здесь VA + VК = V , Vда + Vдк = Vд

Параметры в точках i1 и i2 будут теми же, что в точке 6В

Температуру в точке 5В задаём:

Т5В = 138 К

Р5В = 4,5 МПа

i5В = 319,22 кДж/кг = 9257,38 кДж/кмоль

Принимаем VA = А = 0,813, VК = К = 0,187, Vдк = Vда = 0,1, q3 = 1 кДж/кг для всех аппаратов.

Тогда из уравнения I

VA (i4B - i6В) + Vq3 = A(i3A - i3)

0,813(522,32 - 419,1) + 1 = 0,813(454,6 - i3)

i3 = (394,6 - 112,5)/0,813 = 324,7 кДж/кг

Т3 = 140 К

Проверяем полученное значение i3 с помощью уравнения III:

(0,872 - 0,1)(394,5 - 319,22) + 1 = 0,872(i3 - 333,5)

59,1 = 0,872i3 - 290,8

i3 = (290,8 + 59,1)/0,872 = 401,3 кДж/кг

Уменьшим VА до 0,54:

0,54(522,32 - 419,1) + 1 = 0,872(454,6 - i3)

i3 = (394,6 - 70,023)/0,872 = 372,2 кДж/кг

Проверяем полученное значение i3 с помощью уравнения III:

(0,54 - 0,1)(394,5 - 319,22) + 1 = 0,872(i3 - 333,5)

i3 = (290,8 + 34,123)/0,872 = 372,6 кДж/кг

Т3 = 123 К

Тогда из уравнения II:

VK (i4B - i6В) + Vq3 = K(i4K - i4)

0,56(522,32 - 419,1) + 1 = 0,128(467,9 - i4)

72,6 = 59,9 - 0,128 i4

i4 = (72,6 - 59,9)/0,128 = 332 кДж/кг

Т4 = 140 К

Рассчитываем среднеинтегральную разность температур для каждого из четырёх теплообменников.

а) Материальный баланс теплообменника I:

VA (i4B - i1) + Vq3 = A(i3A - i3)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

0,54*1,15(280 - 173) + 1*q3 = 0,872*1,99(197,7 - 123)

q3 = 121,9 - 66,4 = 55,5 кДж/кг

Рассчитываем коэффициенты В и D:

VA (i4B - i6В) + Vq3 = A(i3A - i3)

VA ДiB + Vq3 = A ДiA

ДiB = A ДiA/ VA - V q3/VA | ДiA/ ДiA

ДiB = A ДiA/ VA - Vq3* ДiA/ ДiA

В = A/VA = 0,872/0,54 = 1,645

D = V q3/VA ДiA = 1*55,5/0,54*(197,7 - 123) = 0,376

ДiB = В ДiA - D ДiA = С ДiA = (1,635 - 0,376) ДiA = 1,259 ДiA

Составляем таблицу:

ТВ , К

iв, кДж/кг

ДiВ

ТА, К

iА, кДж/кг

ДiА

0 - 0

280

522,32

0

197,7

454,6

0

1 - 1

272

512,0

10,324

190,23

-

8,2

2 - 2

261

501,7

20,648

182,76

-

16,4

3 - 3

254

491,3

30,971

175,29

-

24,6

4 - 4

245

481,0

41,295

167,82

-

32,8

5 - 5

235

470,7

51,619

160,35

-

41

6 - 6

225

460,4

61,943

152,88

-

49,2

7 - 7

218

450,1

72,267

145,41

-

57,4

8 - 8

210

439,73

82,59

137,94

-

65,6

9 - 9

199

429,4

92,914

130,47

-

73,8

10 - 10

188

419,12

103,2

123

372,6

82

Строим температурные кривые:

ДТсринт = n/У(1/ДТср)

ДТср

1/ДТср

1

82

0,012

2

82

0,012

3

78

0,0128

4

79

0,0127

5

77

0,013

6

72

0,0139

7

73

0,0137

8

72

0,0139

9

69

0,0145

10

65

0,0154

У(1/ДТср) = 0,1339

ДТср = 10/0,1339 = 54,7 К

б) Материальный баланс теплообменника II:

VK (i4B - i6В) + Vq3 = K(i4K - i4)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

0,56*1,15(280 - 173) + 1*q3 = 0,187*1,684(248,4 - 140)

q3 = 23,4 - 68,9 = -45,5 кДж/кг

Рассчитываем коэффициенты В и D:

VК (i4B - i6В) + Vq3 = K(i4K - i4)

VК ДiB + Vq3 = К ДiК

ДiB = К ДiК/ VК - V q3/VК | ДiК/ ДiК

ДiB = К ДiК/ VК - Vq3* ДiК/ ДiК

В = К/VК = 0,128/0,56 = 0,029

D = V q3/VК ДiК = -1*45,5/0,56*(248,4 - 140) = -0,75

ДiB = В ДiК - D ДiК = С ДiК = (0,029 + 0,75) ДiК = 0,779 ДiК

Составляем таблицу:

ТВ , К

iв, кДж/кг

ДiВ

ТК, К

iК, кДж/кг

ДiК

0 - 0

280

522,32

0

248,4

332

0

1 - 1

272

511,7

10,589

237,56

-

13,593

2 - 2

261

501,1

21,178

226,72

-

27,186

3 - 3

254

490,6

31,767

215,88

-

40,779

4 - 4

245

480

42,356

205,04

-

54,372

5 - 5

235

469,3

52,973

194,2

-

67,975

6 - 6

225

458.8

63,534

183,36

-

81,558

7 - 7

218

448,2

74,123

172,52

-

95,151

8 - 8

210

437,6

84,735

161,68

-

108,77

9 - 9

199

427

95,301

150,84

-

122,33

10 - 10

188

419,12

105,9

140

467,93

135,93

ДТсринт = n/У(1/ДТср)

ДТср

1/ДТср

1

32

0,03125

2

34

0,0294

3

34

0,0294

4

40

0,025

5

41

0,0244

6

42

0,0238

7

45

0,0222

8

48

0,0208

9

48

0,0208

10

48

0,0208

У(1/ДТср) = 0,245

ДТср = 10/0,245 = 40,3 К

в) Материальный баланс теплообменника III:

(VA - Vда)(i6В - i5B) + Vq3 = A(i3 - i2A)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

(0,54 - 0,1)*2,204(188 - 138) + 1*q3 = 0,813*1,684(123 - 85)

q3 = 55,8 - 33,9 = 21,9 кДж/кг

Рассчитываем коэффициенты В и D:

(VA - Vда)(i6В - i5B) + Vq3 = A(i3 - i2A)

(VА - Vда) ДiB + Vq3 = А ДiА

ДiB = А ДiА/ (VА - Vда) - V q3/VА | ДiА/ ДiА

ДiB = А ДiА/ (VА - Vда) - Vq3* ДiА/ ДiА

В =А/(VА - Vда) = 0,813/0,44 = 1,982

D = V q3/(VА - Vда) ДiА = 1*21,9/0,44*(372,6 - 333,5) = 0,057

ДiB = В ДiА - D ДiА = С ДiА = (1,982 - 0,057) ДiА = 1,925 ДiА

Составляем таблицу:

ТВ , К

iв, кДж/кг

ДiВ

ТА, К

iА, кДж/кг

ДiА

0 - 0

188

394,5

0

123

372,6

0

1 - 1

175

387

7,527

119,2

-

3,91

2 - 2

168

379,4

15,1

115,4

-

7,82

3 - 3

162

371,92

22,58

111,6

-

11,73

4 - 4

158

364,4

30,1

107,8

-

15,64

5 - 5

155

356,9

37,6

104

-

19,55

6 - 6

152

349,3

45,2

100,2

-

23,46

7 - 7

149

341,8

52,7

96,4

-

27,37

8 - 8

145

334,3

60,2

92,6

-

31,28

9 - 9

141

326,8

67,741

88,8

-

35,19

10 - 10

138

319,22

75,28

85

333,5

39,1

ДТсринт = n/У(1/ДТср)

ДТср

1/ДТср

1

56

0,0179

2

53

0,0189

3

50

0,02

4

50

0,02

5

51

0,0196

6

52

0,0192

7

53

0,0189

8

52

0,0192

9

52

0,0192

10

53

0,0189

У(1/ДТср) = 0,192

ДТср = 10/0,245 = 52 К

г) Материальный баланс теплообменника IV:

(VК - Vдк)(i6В - i5B) + Vq3 = К(i4 - i2К)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

(0,56 - 0,1)*2,204(188 - 138) + 1*q3 = 0,128*1,742(123 - 88)

q3 = 7,804 - 50,7 = - 42,9 кДж/кг

Рассчитываем коэффициенты В и D:

(VК - Vдк)(i6В - i5B) + Vq3 = К(i4 - i2К)

(Vк - Vдк) ДiB + Vq3 = К Дiк

ДiB = К Дiк/ (VК - Vдк) - V q3/VК | ДiК/ ДiК

ДiB = К ДiК/ (VК - Vдк) - Vq3* ДiК/ ДiК

В =К/(VК - Vдк) = 0,128/0,46 = 0,278

D = V q3/(VК - Vдк) Дiк = -1*42,9/0,46*(372,6 - 332) = - 1,297

ДiB = В ДiК - D ДiК = С Дiк = (0,278 + 1,297) ДiК = 1,488 ДiК

Составляем таблицу:

ТВ , К

iв, кДж/кг

ДiВ

ТК, К

iК, кДж/кг

ДiК

0 - 0

188

394,5

0

140

332

0

1 - 1

174

387,17

7,33

134,8

-

5,06

2 - 2

167

379,8

14,7

129,6

-

10,12

3 - 3

162

371,6

22,9

124,4

-

15,18

4 - 4

158

365,2

29,3

119,2

-

20,24

5 - 5

155

357,9

36,6

114

-

25,3

6 - 6

152

350,5

44

108,8

-

30,36

7 - 7

149

343,2

51,3

103,6

-

35,42

8 - 8

146

335,9

58,6

98,4

-

40,48

9 - 9

143

328,6

65,9

93,2

-

45,54

10 - 10

138

319,22

75,28

88

372,6

50,6

ДТсринт = n/У(1/ДТср)

ДТср

1/ДТср

1

40

0,025

2

37

0,027

3

38

0,026

4

39

0,0256

5

41

0,0244

6

43

0,0233

7

45

0,0222

8

47

0,0213

9

50

0,02

10

50

0,02

У(1/ДТср) = 0,235

ДТср = 10/0,245 = 42,6 К

д) Расчёт основного теплообменника.

Для расчёта теплообменника разбиваем его на 2 трёхпоточных. Для удобства расчёта исходные данные сводим в таблицу.

Поток

Рср, ат.

Тср, К

Ср, кДж/кгК

Уд. Объём v, м3/кг

м, кг*с/м2

*107

л, Вт/мК, *103

Прямой

(воздух)

45

226,5

1,187

0,005

18,8

23,6

Обратный

(О2 под дав)

100

190

2,4

0,00106

108

15

Обратный

(N2 низ дав)

1,3

155

1,047

0,286

9,75

35,04

Прямой поток.

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1711*0,005/3600 = 2,43*10-3 м3/с

3) Выбираем тубку ф 12х1,5 мм

4) Число трубок

n = Vсек/0,785dвн щ = 0,00243/0,785*0,0092*1 = 39 шт

Эквивалентный диаметр

dэкв = 9 - 5 = 4 мм

5) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,004*85,4/9,81*18,8*10-7 = 32413

6) Критерий Прандтля

Pr = 0,802 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*324130,8*0,8020,33 = 63,5

8) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 63,5*23,6*10-3/0,007 = 214,1 Вт/м2К

Обратный поток (кислород под давлением):

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 320*0,0011/3600 = 9,8*10-5 м3/с

3) Выбираем тубку ф 5х0,5 мм гладкую.

4) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,007*330,1/9,81*106*10-7 = 21810

5) Критерий Прандтля

Pr = 1,521 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*218100,8*1,5210,33 = 80,3

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 80,3*15*10-3/0,007 = 172 Вт/м2К

Обратный поток (азот низкого давления)

1)Скорость потока принимаем щ = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 1391*0,286/3600 = 0,11 м3/с

3) Живое сечение для прохода обратного потока:

Fж = Vсек/щ = 0,11/15 = 0,0074 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = щ dвнс/gм = 15*0,004*2,188/9,81*9,75*10-7 = 34313

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*343130,85=299,4

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 299,4*35,04*10-3/0,01 = 1049 Вт/м2К

Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AДiA/3600 = 1391*(454,6 - 381,33)/3600 = 28,3 кВт

2) Среднеинтегральная разность температур ДТср = 54,7 К

3) Коэффициент теплопередачи

КА = 1/[(1/бв)*(Dн/Dвн) + (1/бА)] = 1/[(1/214,1)*(0,012/0,009) + (1/1049)] = 131,1 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA/KA ДТср = 28300/131,1*54,7 = 3,95 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DHn = 1,2*3,95/3,14*0,012*32 = 3,93 м

6) Тепловая нагрузка кислородной секции

QК = КДiA/3600 = 0,183*(467,93 - 332)/3600 = 15,1 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/бв) + (1/бК) *(Dн/Dвн)] = 1/[(1/214,1) + (1/172) *(0,01/0,007)]=77 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК/KК ДТср = 15100/77*25 = 7,8 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DHn = 1,2*7,8/3,14*0,01*55 = 5,42 м

Принимаем l = 5,42 м.

10) Теоретическая высота навивки.

Н = lt2/рDср = 17*0,0122/3,14*0,286 = 0,43 м.

Второй теплообменник.

Поток

Рср, ат.

Тср, К

Ср, кДж/кгК

Уд. Объём v, м3/кг

м, кг*с/м2

*107

л, Вт/мК, *103

Прямой

(воздух)

45

155,5

2,328

0,007

142,62

23,73

Обратный

(О2 под дав)

100

132,5

1,831

0,00104

943,3

106,8

Обратный

(N2 низ дав)

1,3

112,5

1,061

0,32

75,25

10,9

Прямой поток.

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1875*0,007/3600 = 2,6*10-3 м3/с

3) Выбираем тубку ф 10х1,5 мм гладкую.

4) Число трубок

n = Vсек/0,785dвн щ = 0,0026/0,785*0,0072*1 = 45 шт

Эквивалентный диаметр

dэкв = 9 - 5 = 4 мм

5) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,004*169,4/9,81*142,62*10-7 = 83140

6) Критерий Прандтля

Pr =1,392 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*831400,8*1,3920,33 = 145

8) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 145*10,9*10-3/0,007 = 225,8 Вт/м2К

Обратный поток (кислород под давлением):

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 800*0,00104/3600 = 1,2*10-4 м3/с

3) Выбираем тубку ф 10х1,5 мм с оребрением из проволоки ф 1,6 мм и шагом оребрения tп = 5,5мм

4) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,007*1067,2/9,81*75,25*10-7 = 101200

5) Критерий Прандтля

Pr = 1,87 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*1012000,8*1,870,33 = 297,2

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 297,2*10,9*10-3/0,007 = 462,8 Вт/м2К

Обратный поток (азот низкого давления)

1)Скорость потока принимаем щ = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 2725*0,32/3600 = 0,242 м3/с

3) Живое сечение для прохода обратного потока:

Fж = Vсек/щ = 0,242/15 = 0,016 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = щ dвнс/gм = 15*0,01*3,04/9,81*75,25*10-7 = 60598

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*605980,85=485,6

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 485,6*10,9*10-3/0,01 = 529,3 Вт/м2К

Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AДiA/3600 = 2725(391,85 - 333,5)/3600 = 57 кВт

2) Среднеинтегральная разность температур ДТср = 52 К

3) Коэффициент теплопередачи

КА = 1/[(1/бв)*(Dн/Dвн) + (1/бА)] = 1/[(1/225,8)*(0,01/0,007) + (1/529,3)] = 121,7 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA/KA ДТср = 57000/121,7*52 = 9 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DHn = 1,2*9/3,14*0,01*45 = 7,717 м

6) Тепловая нагрузка кислородной секции

QК = КДiК/3600 = 0,128*(352,8 - 332)/3600 = 4,6 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/бв) + (1/бК) *(Dн/Dвн)] = 1/[(1/225,8) + (1/529,3) *(0,01/0,007)] = 140,3 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК/KК ДТср = 4600/140*42,6 = 0,77 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DHn = 1,2*0,77/3,14*0,01*45 = 0,654 м

Принимаем l = 7,717 м.

10) Теоретическая высота навивки.

Н = lt2/рDср = 7,717*0,0122/3,14*0,286 = 0,33 м.

Окончательный вариант расчёта принимаем на ЭВМ.

6. Расчёт блока очистки.

Исходные данные:

Количество очищаемого воздуха …………………… V = 2207,5 кг/ч = 1711 м3/ч

Давление потока …………………………………………… Р = 4,5 МПа

Температура очищаемого воздуха………………………… Т = 275 К

Расчётное содержание углекислого газа по объёму …………………...С = 0,03%

Адсорбент ……………………………………………………NaX

Диаметр зёрен ………………………………………………. dз = 4 мм

Насыпной вес цеолита ………………………………………гц = 700 кг/м3

Динамическая ёмкость цеолита по парам СО2 ……………ад = 0,013 м3/кг

Принимаем в качестве адсорберов стандартный баллон диаметром Da = 460 мм и высоту слоя засыпки адсорбента

L = 1300 мм.

2) Скорость очищаемого воздуха в адсорбере:

щ = 4Va/nрDa2

n - количество одновременно работающих адсорберов;

Vа - расход очищаемого воздуха при условиях адсорбции, т. е. при Р = 4,5 МПа и Тв = 275 К:

Va = VTB P/T*PB = 1711*275*1/273*45 = 69,9 кг/ч

щ = 4*69,9/3*3,14*0,462 = 140,3 кг/ч*м2

Определяем вес цеолита, находящегося в адсорбере:

Gц = nVад гц = L*г*n*р*Da2/4 = 1*3,14*0,462*1,3*700/4 = 453,4 кг

Определяем количество СО2 , которое способен поглотить цеолит:

VCO2 = Gц*aд = 453,4*0,013 = 5,894 м3

Определяем количество СО2, поступающее каждый час в адсорбер:

VCO2' = V*Co = 3125*0,0003 = 0,937 м3/ч

Время защитного действия адсорбента:

фпр = VCO2/ VCO2' = 5,894/0,937 = 6,29 ч

Увеличим число адсорберов до n = 4. Тогда:

щ = 4*69,9/4*3,14*0,462 = 105,2 кг/ч*м2

Gц = 4*3,14*0,462*1,3*700/4 = 604,6 кг

VCO2 = Gc *aд = 604,6*0,013 = 7,86 м3

фпр = 7,86/0,937 = 8,388 ч.

Выбираем расчётное время защитного действия фпр = 6 ч. с учётом запаса времени.

2) Ориентировочное количество азота для регенерации блока адсорберов:

Vрег = 1,2*GH2O /x' фрег

GH2O - количество влаги, поглощённой адсорбентом к моменту регенерации

GH2O = GцаН2О = 604,2*0,2 = 120,84 кг

фрег - время регенерации, принимаем

фрег = 0,5 фпр = 3 ч.

х' - влагосодержание азота при Тср.вых и Р = 105 Па:

Тср.вых = (Твых.1 + Твых.2)/2 = (275 + 623)/2 = 449 К

х = 240 г/м3

Vрег = 1,2*120,84/0,24*3 = 201,4 м3/ч

Проверяем количество регенерирующего газа по тепловому балансу:

Vрег *сN2*CpN2*(Твх + Твых. ср)* фрег = УQ

УQ = Q1 + Q2 + Q3 + Q4 + Q5

Q1 - количество тепла, затраченное на нагрев металла;

Q2 - количество тепла, затраченное на нагрев адсорбента,

Q3 - количество тепла, необходимое для десорбции влаги, поглощённой адсорбентом;

Q4 - количество тепла, необходимое для нагрева изоляции;

Q5 - потери тепла в окружающую среду.

Q1 = GмСм(Тср' - Tнач' )

Gм - вес двух баллонов с коммуникациями;

См - теплоёмкость металла, См = 0,503 кДж/кгК

Tнач' - температура металла в начале регенерации, Tнач' = 280 К

Тср' - средняя температура металла в конце процесса регенерации,

Тср' = (Твх' + Твых' )/2 = (673 + 623)/2 = 648 К

Твх' - температура азота на входе в блок очистки, Твх' = 673 К;

Твых' - температура азота на выходе из блока очистки, Твх' = 623 К;

Для определения веса блока очистки определяем массу одного баллона, который имеет следующие геометрические размеры:

наружний диаметр ……………………………………………….Dн = 510 мм,

внутренний диаметр ……………………………………………..Dвн = 460 мм,

высота общая ……………………………………………………..Н = 1500 мм,

высота цилиндрической части …………………………………..Нц = 1245 мм.

Тогда вес цилиндрической части баллона

GM' = (Dн2 - Dвн2)Нц*гм*р/4 = (0,512 - 0,462)*1,245*7,85*103*3,14/4 = 372,1 кг,

где гм - удельный вес металла, гм = 7,85*103 кг/м3.

Вес полусферического днища

GM'' = [(Dн3/2) - (Dвн3/2)]* гм*4р/6 = [(0,513/2) - (0,463/2)]*7,85*103*4*3,14/6 = 7,2 кг

Вес баллона:

GM' + GM'' = 382 + 7,2 = 389,2 кг

Вес крышки с коммуникациями принимаем 20% от веса баллона:

GM''' = 389,2*0,2 = 77,84 кг

Вес четырёх баллонов с коммуникацией:

GM = 4(GM' + GM'' + GM''' ) = 4*(382 + 7,2 + 77,84) = 1868 кг.

Тогда:

Q1 = 1868*0,503*(648 - 275) = 3,51*105 кДж

Количество тепла, затрачиваемое на нагревание адсорбента:

Q2 = GцСц(Тср' - Tнач' ) = 604,6*0,21*(648 - 275) = 47358 кДж

Количество тепла, затрачиваемое на десорбцию влаги:

Q3 = GH2OCp(Ткип - Тнач' ) + GH2O*е = 120,84*1*(373 - 275) + 120,84*2258,2 = 2,8*105 кДж

е - теплота десорбции, равная теплоте парообразования воды; Ср - теплоёмкость воды.

Количество тепла, затрачиваемое на нагрез изоляции:

Q4 = 0,2Vиз гизСиз(Тиз - Тнач) = 0,2*8,919*100*1,886*(523 - 275) = 8,3*104 кДж

Vиз = Vб - 4Vбалл = 1,92*2,1*2,22 - 4*0,20785*0,512*0,15 = 8,919 м3 - объём изоляции.

гиз - объёмный вес шлаковой ваты, гиз = 100 кг/м3

Сиз - средняя теплоёмкость шлаковой ваты, Сиз = 1,886 кДж/кгК

Потери тепла в окружающую среду составляют 20% от УQ = Q1 + Q2 + Q4 :

Q5 = 0,2*(3,51*105 + 47358 + 8,3*104 ) = 9.63*104 кДж

Определяем количество регенерирующего газа:

Vрег = (Q1 + Q2 + Q3 + Q4 + Q5)/ сN2*CpN2*(Твх + Твых. ср)* фрег =

=(3,51*105 + 47358 + 2,8*105 + 8,3*104 + 9,63*104)/(1,251*1,048*(673 - 463)*3) = 1038 нм3/ч

Проверяем скорость регенерирующего газа, отнесённую к 293 К:

щрег = 4 Vрег*293/600*р*Da2 *n*Tнач = 4*1038*293/600*3,14*0,462*2*275 = 5,546 м/с

n - количество одновременно регенерируемых адсорберов, n = 2

Определяем гидравлическое сопротивление слоя адсорбента при регенерации.

ДР = 2fсLщ2/9,8dэх2

где ДР - потери давления, Па;

f - коэффициент сопротивления;

с - плотность газа, кг/м3;

L - длина слоя сорбента, м;

dэ - эквивалентный диаметр каналов между зёрнами, м;

щ - скорость газа по всему сечению адсорбера в рабочих условиях, м/с;

а - пористость слоя адсорбента, а = 0,35 м2/м3.

Скорость регенерирующего газа при рабочих условиях:

щ = 4*Vрег*Твых.ср./3600*р*Da2*n*Тнач = 4*1038*463/3600*3,14*0,462*2*275 = 1,5 м/с

Эквивалентный диаметр каналов между зёрнами:

dэ = 4*а*dз/6*(1 - а) = 4*0,35*4/6*(1 - 0,35) = 1,44 мм.

Для определения коэффициента сопротивления находим численное значение критерия Рейнольдса:

Re = щ*dэ*г/а*м*g = 1,5*0,00144*0,79*107/0,35*25*9,81 = 198,8

где м - динамическая вязкость, м = 25*10-7 Па*с;

г - удельный вес азота при условиях регенерации,

г = г0 *Р*Т0/Р0*Твых.ср = 1,251*1,1*273/1,033*463 = 0,79 кг/м3

По графику в работе [6] по значению критерия Рейнольдса определяем коэффициент сопротивления f = 2,2

Тогда:

ДР = 2*2,2*0,79*1,3*1,52/9,81*0,00144*0,352 = 587,5 Па

Определяем мощность электроподогревателя:

N = 1,3* Vрег*с*Ср*(Твх - Тнач)/860 = 1,3*1038*1,251*0,25(673 - 293)/860 = 70,3 кВт

где Ср = 0,25 ккал/кг*К

7. Определение общих энергетических затрат установки

l = [Vсв RToc ln(Pk/Pn)]/зиз Кж*3600 = 1711*0,287*296,6*ln(4,5/0,1)/0,6*320*3600 = 0,802 кВт

где V - полное количество перерабатываемого воздуха, V = 2207,5 кг/ч = 1711 м3/ч

св - плотность воздуха при нормальных условиях, св = 1,29 кг/м3

R - газовая постоянная для воздуха, R = 0,287 кДж/кгК

зиз - изотермический КПД, зиз = 0,6

Кж - количество получаемого кислорода, К = 320 м3/ч

Тос - температура окружающей среды, принимается равной средне - годовой температуре в городе Владивостоке, Тос = 23,60С = 296,6 К

8. Расчёт процесса ректификации.

Расчёт процесса ректификации производим на ЭВМ (см. распечатки 4 и 5).

Вначале проводим расчёт нижней колонны. Исходные данные вводим в виде массива. Седьмая

строка массива несёт в себе информацию о входящем в колонну потоке воздуха: принимаем, что в нижнюю часть нижней колонны мы вводим жидкий воздух.

1 - фазовое состояние потока, жидкость;

0,81 - эффективность цикла. Поскольку в установке для ожижения используется цикл Гейландта (х = 0,19), то эффективность установки равна 1 - х = 0,81.

0,7812 - содержание азота в воздухе;

0,0093 - содержание аргона в воздухе;

0,2095 - содержание кислорода в воздухе.

Нагрузку конденсатора подбираем таким образом, чтобы нагрузка испарителя стремилась к нулю.

8. Расчёт конденсатора - испарителя.

Расчёт конденсатора - испарителя также проводим на ЭВМ с помощью программы, разработанной Е. И. Борзенко.

В результате расчёта получены следующие данные (смотри распечатку 6):

Коэффициент телоотдачи в испарителе……….……….ALFA1 = 1130,7 кДж/кгК

Коэффициент телоотдачи в конденсаторе…………… ALFA2 = 2135,2 кДж/кгК

Площадь теплопередающей поверхности………………..………F1 = 63,5 м3

Давление в верхней колонне ………………………………………Р1 = 0,17 МПа.

10. Подбор оборудования.

1. Выбор компрессора.

Выбираем 2 компрессора 605ВП16/70.

Производительность одного компрессора ………………………………..16±5% м3/мин

Давление всасывания……………………………………………………….0,1 МПа

Давление нагнетания………………………………………………………..7 МПа

Потребляемая мощность…………………………………………………….192 кВт

Установленная мощность электродвигателя………………………………200 кВт

2. Выбор детандера.

Выбираем ДТ - 0,3/4 .

Характеристики детандера:

Производительность…………………………………………………… V = 340 м3/ч

Давление на входе ………………………………………………………Рвх = 4 МПа

Давление на выходе …………………………………………………….Рвых = 0.6 МПа

Температура на входе …………………………………………………..Твх = 188 К

Адиабатный КПД ……………………………………………………….зад = 0,7

3. Выбор блока очистки.

Выбираем стандартный цеолитовый блок осушки и очистки воздуха ЦБ - 2400/64.

Характеристика аппарата:

Объёмный расход воздуха ……………………………….V=2400 м3/ч

Рабочее давление:

максимальное ……………………………………………Рмакс = 6,4 МПа

минимальное………………………………………..……Рмин = 3,5 МПа

Размеры сосудов…………………………………………750х4200 мм.

Количество сосудов……………………………………..2 шт.

Масса цеолита …………………………………………..М = 2060 кг

Список используемой литературы:

Акулов Л.А., Холодковский С.В. Методические указания к курсовому проектированию криогенных установок по курсам «Криогенные установки и системы» и «Установки сжижения и разделения газовых смесей» для студентов специальности 1603. - СПб.; СПбТИХП, 1994. - 32 с.

Акулов Л.А., Борзенко Е.И., Новотельнов В.Н., Зайцев А.В.Теплофизические свойства криопродуктов. Учебное пособие для ВУЗов. - СПб.: Политехника, 2001. - 243 с.

Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 1., - М.: Машиностроение, 1998. - 464 с.

Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 2., - М.: Машиностроение, 1999. - 720 с.

Акулов Л.А., Холодковский С.В. Криогенные установки (атлас технологических схем криогенных установок): Учебное пособие. - СПб.: СПбГАХПТ, 1995. - 65 с.

6. Кислород. Справочник в двух частях. Под ред. Д. Л. Глизманенко. М., «Металлургия», 1967.


© 2010 BANKS OF РЕФЕРАТ