Рефераты
 

Система математических расчетов MATLAB

b>a(1) y(n) = b(1) x(n) + b(2) x(n-1) + … + b(nb) x(n-nb+1) -

- a(2) y(n-1) - … - a(na) y(n-na+1)

Допустим, например, что мы хотим сгладить данные нашей задачи по движению автомоби-лей при помощи усредняющего фильтра, который выдает среднее количество машин за каж-дые 4 часа. Данный процесс можно выразить при помощи следующего уравнения в конеч-ных разностях:

y(n) = (1/4) x(n) + (1/4) x(n-1) + (1/4) x(n-2) + (1/4) x(n-3)

Соответствующие векторы равны:

a = 1; b = [1/4 1/4 1/4 1/4];

Воспользуемся данными матрицы count из раздела Анализ данных и статистика. Для на-шего примера, обозначим первый столбец матрицы count через вектор x :

x = count(:, 1);

Усредненные за 4 часа данные могут быть легко вычислены при помощи приведенной выше функции y = filter(b, a, x). Сравним исходные и сглаженные данные, построив их на одном графике.

t = 1:length(x) ;

plot(t, x, '-.', t, y, '-'); grid on

legend('Original Data','Smoothed Data',2)

Исходные данные наблюдения представлены здесь штрих-пунктирной линией, а сглаженные за 4 часа данные - сплошной линией.

Для различных практических приложений, в специальном пакете Signal Processing Toolbox предусмотрены многочисленные функции для анализа сигналов и проектирования дискрет-ных фильтров.

Многомерные Массивы

Многомерные массивы в системе MATLAB являются распространением обычных двумерных матриц. Как известно, матрицы имеют две размерности - строки (row) и столбцы (column).

Вы можете выделить любой элемент двумерной матрицы при помощи двух индексов, где первый является индексом (номером) строки, а второй - индексом столбца. Многомерные массивы имеют дополнительную индексацию. Например, трехмерные массивы имеют три индекса:

· Первый индекс указывает размерность 1 , то есть строки.

· Второй индекс указывает размерность 2. то есть столбцы.

· Третий индекс указывает на размерность 3. В данном пособии используется концепция страницы (page) для представления размерности 3 и выше.

Для обращения, например, к элементу второй строки и третьего столбца на странице 2 нужно воспользоваться индексацией (2,3,2) (см. рисунок ниже).

Если вы добавляете размерности к массиву, вы также добавляете индексы. Четырехмерный массив, например, имеет 4 индекса. Первые два из них указывают на пару строка-столбец, а следующие два характеризуют третью и четвертую размерности.

Отметиим, что общие функции обращения с многомерными массивами находятся в директории datatypes.

Создание Многомерных Массивов

При создании многомерных массивов можно воспользоваться теми же приемами, которые используются для двумерных матриц.

Создание массивов с использованием индексации

Один из способов формирования многомерного массива состоит в создании двумерного массива и соответствующего его расширения. Например, начнем с простого двумерного массива А.

A = [5 7 8; 0 1 9; 4 3 6];

А является массивом 3х3, то есть его размерности строк и столбцов равны трем. Для добавления третьей размерности к А запишем

A(:,:,2) = [1 0 4; 3 5 6; 9 8 7].

MATLAB выдаст

A(:, : ,1) =

5 7 8

0 1 9

4 3 6

A(:, :, 2) =

1 0 4

3 5 6

9 8 7

Вы можете продолжить добавление строк, столбцов или страниц аналогичным образом.

Расширение Многомерных Массивов. Для расширения любой размерности массива А нужно:

· Увеличить или добавить соответствующий индекс и задать требуемые значения.

· Добавить такое же количество элементов к соответствующим размерностям массива. Так, для числовых массивов все строки должны иметь одинаковое число элементов, все страницы должны иметь одинаковое число строк и столбцов и т.д.

Вы можете воспользоваться свойством скалярного распространения системы MATLAB, совместно с оператором двоеточия, для заполнения всей размерности единственным числом:

A(:, :, 3) = 5;

A(:, :, 3)

ans =

5 5 5

5 5 5

5 5 5

Для превращения А в четырехмерный массив размерности 3х3х3х2 введите

A(:, :, 1, 2) = [1 2 3; 4 5 6; 7 8 9];

A(:, :, 2, 2) = [9 8 7; 6 5 4; 3 2 1];

A(:, :, 3, 2) = [1 0 1; 1 1 0; 0 1 1];

Отметим, что после первых двух вводов MATLAB добавляет в A требуемое количество нулей, чтобы поддержать соответствующие размеры размерностей (речь идет о первом элементе по четвертой размерности, то есть при четвертом индексе равном единице, массив А будет содержать три нулевые матрицы размера 3х3).

Создание масивом с применением функций MATLAB-а.

Вы можете использовать для создания многомерных массивов такие функции MATLAB-а как randn, ones, и zeros, совершенно аналогично способу используемому для двумерных матриц. Каждый вводимый аргумент представляет размер соответствующей размерности в результирующем массиве. Например, для создания массива нормально распределенных случайных чисел размера 4х3х2 следует записать:

B = randn(4,3,2).

Для создания массива, заполненного единственным постоянным значением можно восполь-зоваться функцией repmat. Эта функция копирует массив (в нашем случае массив размера 1х1) вдоль вектора размерностей массива.

B = repmat(5,[3 4 2])

B(:, :, 1) =

5 5 5 5

5 5 5 5

5 5 5 5

B(:, :, 2) =

5 5 5 5

5 5 5 5

5 5 5 5

Внимание! Любая размерность массива может иметь размер 0, что просто дает пустой массив (empty array) . Так, размер 10х0х20 является допустимым размером многомерного массива.

Создание многомерного массива при помощи функции cat.

Функция cat дает простой путь построения многомерных массивов; она объединяет набор массивов вдоль заданной размерности.

B = cat (dim,A1,A2...)

где А1, А2 и т.д. являются объединяемыми массивами. а dim есть размерность, вдоль которой они объединяются. Например, для создания нового массива из двух двумерных матриц при помощи функции cat запишем

B = cat (3, [2 8; 0 5], [1 3; 7 9])

что дает трехмерный массив с двумя страницами

B(:, :, 1) =

2 8

0 5

B(:, :, 2) =

1 3

7 9

Функция cat принимает любые комбинации существующих и новых данных. Более того, вы можете осуществлять вложение данных функций. Приведенные ниже строки, к примеру, формируют четырехмерный массив:

A = cat (3, [9 2; 6 5], [7 1; 8 4])

B = cat (3, [3 5; 0 1], [5 6; 2 1])

D = cat (4, A, B, cat (3, [1 2; 3 4], [4 3; 2 1])).

Функция cat автоматически добавляет, при необходимости, единичные индексы между размерностями. Например, для создания массива размера 2х2х1х2 можно ввести

C = cat (4, [1 2; 4 5], [7 8; 3 2])

В данном случае функция cat вводит нужное число единичных размерностей для создания четырехмерного массива, чья последняя размерность не является единичной. Если бы аргумент dim был бы равен 5, последняя запись привела бы к массиву размера 2х2х1х1х2. Это добавляет еще одну единицу в индексации массива. Для обращения к значению 8 в четырехмерном случае нужно применить следующую индексацию

Индекс единичной размерности

Определение характеристик многомерных массивов.

Для получения информации об имеющихся многомерных массивах можно воспользоваться стандартными командами size (дает размер массива), ndims (дает количество размерностей) и whos (последняя команда дает подробную информацию о всех переменных рабочего пространства системы MATLAB). Для вышеприведенного примера мы получим

size(C)

ans =

2 2 1 2

ndims(C)

ans =

4

Индексация

Многие концепции, используемые в двумерном случае, распространяются также на много-мерные массивы. Для выделения (обращения) к какому-либо одному элементу многомерного массива следует воспользоваться целочисленной индексацией. Каждый индекс указывает на соответствующую размерность: первый индекс на размерность строк, второй индекс на раз-мерность столбцов, третий на первую размерность страниц и так далее. Рассмотрим массив случайных целых чисел nddata размера 10х5х3:

nddata = fix (8*randn (10, 5, 3));

Для обращения к элементу (3,2) на странице 2 массива nddata нужно записать nddata(3,2,2).

Вы можете также использовать векторы как массив индексов. В этом случае каждый элемент вектора должен быть допустимым индексом, то есть должен быть в пределах границ, опре-деленных для размерностей массива. Так, для обращения к элементам (2,1), (2,3), и (2,4) на странице 3 массива nddata, можно записать

nddata (2, [1 3 4], 3).

Оператор двоеточия и индексирование многомерных массивов.

Стандартная индексация MATLAB-а при помощи оператора двоеточия (colon) применима и в случае многомерных массивов. Например, для выбора всего третьего столбца страницы 2 массива nddata используется запись nddata(:, 3, 2). Оператор двоеточия также полезен и для выделения определенных подмножеств данных. Так, ввод nddata(2:3,2:3,1) дает массив (мат-рицу) размера 2х2, который является подмножеством данных на странице 1 массива nddata. Эта матрица состоит из данных второй и третьей строки и сторого и третьего столбца первой стриницы многомерного массива. Оператор двоеточия может использоваться для индексации с обеих сторон записи. Например, для создания массива нулей размера 4х4 записываем:

C = zeros (4,4)

Теперь, чтобы присвоить значения подмножества 2х2 массива nddata четырем элементам в центре массива С запишем

C(2:3,2:3) = nddata (2:3,1:2,2)

Устранение неопределенностей в многомерной индексации

Некоторые выражения, такие как

A(:, :, 2) = 1:10

Являются неоднозначными, поскольку они не обеспечивают достаточного объема информа-ции относительно структуры размерности, в которую вводятся данные. В представленном выше случае, делается попытка задать одномерный вектор в двумерном объекте. В таких ситуациях MATLAB выдает сообщение об ошибке. Для устранения неопреденности, нужно убедиться, что обеспечена достаточная информация о месе записи данных, и что как данные так и место назначения имеют одинаковую форму. Например,

A(1,:,2) = 1:10.

Изменение формы (Reshaping)

Если вы не меняете форму или размер, массивы в системе MATLAB сохраняют размернос-ти, заданные при их создании. Вы можете изменить размер массива путем добавления или удаления элементов. Вы можете также изменить форму массива изменяя размерности строк, столбцов и страниц, при условии сохранения тех же элементов. Функция reshape выполняет указанную операцию. Для многомерных массивов эта функция имеет вид

B = reshape (A, [s1 s2 s3 ...] )

где s1, s2, и так далее характеризуют желаемый размер для каждой размерности преобразо-ванной матрицы. Отметим, что преобразованный массив должен иметь то же число элемен-тов, что и исходный массив (иными словами, произведение размеров массивов должно быть неизменным).

Функция reshape «действует» вдоль столбцов. Она создает преобразованную матрицу путем взятия последовательных элементов вдоль каждого столбца исходной матрицы.

Ниже в качестве примеров приведены несколько примеров массивов, которые могут быть получены из массива nddata (обратите внимание на размерности).

B = reshape(nddata,[6 25])

C = reshape(nddata,[5 3 10])

D = reshape(nddata,[5 3 2 5])

Удаление единичных размерностей.

Система MATLAB создает единичные размерности, когда вы задаете их при создании или преобразовании массива, или же в результате вычислений приводящих к появлению указан-ных размерностей.

B = repmat (5, [2 3 1 4] ) ;

size(B)

ans =

2 3 1 4

Функция squeeze удаляет единичные размерности из массива.

C = squeeze(B);

size(C)

ans =

2 3 4

Функция squeeze не оказывает воздействия на двумерные массивы - векторы-строки оста-ются строками.

Вычисления с многомерными массивами

Многие вычислительные и математические функции MATLAB-а принимают в качестве аргументов многомерные массивы. Эти функции действуют на определенные размерности многомерных массивов, в частности, на отдельные элементы, векторы или матрицы.

Действия над векторами

Функции которые действуют над векторами, такие как sum, mean, и т.д., по умолчанию обы-чно действуют вдоль первой неединичной размерности многомерного массива. Многие из этих функций дают возможность задать размерность вдоль которой они действуют. Однако, есть и исключения. Например, функция cross, которая определяет векторное произведение двух векторов, действует вдоль первой неединичной размерности, имеющей размер 3.

Внимание! Во многих случаях эти функции имеют другие ограничения на входные аргумен-ты - например, некоторые функции, допускающие многомерные входные массивы, требуют чтобы массивы имели одинаковый размер.

Поэлементное воздействие

Те функции MATLAB-а, которые действуют поэлементно на двумерные массивы, такие как тригонометрические и экспоненциальные функции, работают совершенно аналогично и в многомерном случае. Например, функция sin возвращает массив того же размера, что и вход-ной массив. Каждый элемент выходного массива является синусом соответствующего эле-мента входного массива. Аналогично, все арифметические, логические операторы и операторы отношения действуют с соответствующими элементами многомерных массивов (которые должны иметь одинаковые размеры каждой размерности). Если один из операндов является скаляром, а второй - скаляром, то операторы применяют скаляр ко всем элементам массива.

Действия над плоскостями и матрицами

Функции, действующие над плоскостями или матрицами, такие как функции линейной алге-бры или матричные функции в директории matfun , не принимают в качестве аргументов многомерные массивы. Иными словами, вы не можете использовать функции в директории matfun, или операторы *, ^, \, или /, с многомерными массивами. Попытка использования многомерных массивов или операндов в таких случаях приводит к сообщению об ошибке.

Вы можете, тем не менее, применить матричные функции или операторы к матрицам внутри многомерных массивов. Например, сооздадим трехмерный массив А

A = cat (3 , [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], [6 4 7; 6 8 5; 5 4 3]);

Применение функции eig ко всему многомерному массиву дает сообщение об ошибке:

eig(A)

??? Error using eig

Input arguments must be 2-D.

Вы можете, однако, приментиь функцию eig к отдельным плоскостям в пределах массива. Например, воспользуемся оператором двоеточия для выделения одной страницы (допустим, второй):

eig(A(:, :, 2))

ans =

-2.6260

12.9129

2.7131

Внимание! В первом случае, где не используется оператор двоеточия, для избежания ошиб-ки нужно использовать функцию squeeze. Например, ввод eig (A(2,:,:)) приводит к ошибке так как размер входа есть [1 3 3]. Выражение eig(squeeze(A(2, :, :))), однако, передает функции eig допустимую двумерную матрицу.

Организация данных в многомерных массивах

Вы можете использовать два возможных варианта представления данных при помощи многомерных массивов:

· Как плоскости (или страницы) двумерных данных. В дальнейшем вы можете обра-щаться с этими страницами как с матрицами.

· Как многомерные данные. Например, вы можете иметь четырехмерный массив, где каждый элемент соответствует температуре или давлению воздуха, измеренным на равномерно распределенной трехмерной (пространственной) сетке в комнате.

В качестве конкретного примера рассмотрим представление какого-либо изображения в формате RGB. Напомним, что в формате RGB изображение хранится в виде трех двумерных матриц одинакового размера, каждая из которых характеризует интенсивность одного цвета - красного (Red), зеленого (Green) и синего (Blue) - в соответствующей точке. Общая карти-на при этом получается в результате наложения трех указанных матриц. Для отдельного изображения, использование многомерных массивов является, вероятно, наиболее легким путем для запоминания данных и доступа к ним.

Пусть все изображение хранится в файле RGB. Для доступа к полной плоскости изображе-ния в одном цвете, допустим - красном, следует записать

red_plane = RGB (:,:,1);

Для доступа к части всего изображения можно использовать запись

subimage = RGB (20:40, 50:85, :)

Изображение в формате RGB является хорошим примером данных, для которых может пот-ребоваться доступ к отдельным плоскостям, для операций типа фильтрации или просто де-монстрации. В других задачах, однако, сами данные могут быть многомерными. Рассмотри, например, набор температур, измеренных на равномерной пространственной сетке какого-либо помещения.

В данном случае пространственное положение каждого значения температуры является составной частью набора данных , то есть физическое расположение в трехмерном прос-транстве является частью информации. Такие данные также весьма прспособлены для представления при помощи многомерных массивов (см.рисунок выше).

Здесь, чтобы найти среднее значение всех измерений, то есть среднюю температуру воздуха в комнате, можно записать

mean (mean (mean (TEMP)))

где через TEMP обозначен массив четырехмерных данных.

Дл получения вектора «серединных» температур (элемента (2,2)) комнаты на каждой странице, то есть в каждом сечении, запишем

B = TEMP (2, 2, :).

ОРГАНИЗАЦИЯ И ХРАНЕНИЕ ДАННЫХ

Для хранения различных типов данных в системе MATLAB используются так называемые структуры (structure) и ячейки (cell). Структуры (иногда их называют массивами структур) служат для хранения массивов различных типов данных, организаванных по принципу пои-менованных полей. Ячейки (или массивы ячеек) являются специальным классом массивов системы MATLAB, чьи элементы состоят из ячеек, в которых могут храниться любые другие массивы данных, применяемые в MATLAB-е. Как структуры, так и ячейки обеспечивают иерархический механизм для хранения самых различных типов данных. Они отличаются друг от друга прежде всего способом организации базы данных. При использовании струк-тур доступ к данным осуществляется при помощи наименований полей, тогда как в массивах ячеек доступ осуществляется при помощи матричной индексации.

В приведенных ниже таблицах дается краткое описание функций MATLAB-а, предназначен-ных для работы с массивами структур и ячеек

Структуры

Функция

Описание

fieldnames

Получить имена полей

getfield

Получить содержание поля

isfield

Истинно, если поле есть в структуре

isstruct

Истинно, если структура

rmfield

Удалить поле

setfield

Установить содержимое поля

struct

Создать массив структур

struct2cell

Преобразовать структуру в массив ячеек

Ячейки

Функция

Описание

cell

Создать массив ячеек

cell2struct

Преобразовать массив ячеек в структуру

celldisp

Показать содержимое массива ячеек

cellfun

Применить функцию к массиву ячеек

cellplot

Показать графическую структуру массива ячеек

deal

Обмен данными между любыми классами массивов

iscell

Истинно для массивов ячеек

num2cell

Преобразовать числовой масси в массив ячеек

МАССИВЫ СТРУКТУР

Структуры это массивы данных с поименованными «хранилищами» данных, называемыми полями. Поля структуры могут содержать данные любого типа. Например, одно поле может содержать текстовую строку, представляющую имя (name), второе поле может содержать скалярную переменную, являющуюся счетом за лечение (billing), третье может содержать матрицу результатов медицинских анализов (test) и так далее.

Как и обычным масивам данных, структурам присущи основные свойства массивов. Одна структура является структурой размера 1х1, точно так же как число 5 является числовым массивом размера 1х1. Вы можете строить структуры с лбой допустимой размерностью или формы, включая многомерные массивы структур.

Создание массивов структур

Имеется два следующих способа создания структур:

· Путем использования операторов присваивания.

· С использованием функции struct.

Создание массивов структур с применением операторов присваивания.

Вы можете построить простую структуру размера 1х1 путем прямого присваивания значений индивидуальным полям. MATLAB при этом автоматически конструирует соответствующую структуру. Например, создадим 1х1 структуру данных пациента лечебницы, показанную в начале данного раздела. Для этого следует ввести следующие записи:

patient.name = 'John Doe';

patient.billing = 127.00;

patient.test = [79 75 73; 180 178 177.5; 220 210 205];

Если ввести теперь в командной строке запись

patient

то MATLAB ответит

name: 'John Doe'

billing: 127

test: [3x3 double]

patient является массивом, представляющим собой структуру с тремя полями. Для расшире-ния данного массива нужно просто добавить соответствующие индексы после имени струк-туры:

patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

Структура patient имеет теперь размер [1 2]. Отметим, что если массив структур содержит более одного элемента, то MATLAB уже не выводит на экран содержание отдельных полей при вводе имени структуры. Взамен, на дисплей выдаются общая информация о содержимом структуры, то есть имена полей:

Patient

patient =

1x2 struct array with fields:

name

billing

test

Для получения данной информации вы можете также использовать функцию fieldnames. Данная функция выдает массив ячеек содержащих названия полей в форме строки. Если вы расширяете структуру, MATLAB запалняет те поля, в которые вы не ввели данные, пустыми матрицами так, что:

· Все структуры в массиве имеют одинаковое число полей.

· Все соответствующие поля имеют одинаковые имена.

Например, при вводе

patient(3).name = 'Alan Johnson'

структура patient принимает размер 1х3. При это оба поля patient(3).billing и patient(3).test содержат пустые матрицы.

Внимание! Размеры данных в одноименных полях могут быть различными. В нашем при-мере со структурой patient поля name могут иметь различную длину, поля test могут содер-жать массивы числовых данных различных размеров и так далее.

Создание массива структур с использованием функции struct.

Вы можете заранее создать массив структур применив функцию struct. Ее основная форма имеет вид

str_array = struct ('поле1',знач1,'поле2',знач2, ...)

где аргументами являются имена полей и их соответствующие значения. Значением поля мо-жет быть или одно значение, представленное любой допустимой конструкцией в MATLAB-е, или массив ячеек данных (массивы ячеек рассмотрены в следующем разделе). Все значения полей в списке аргументов должны иметь одинаковый вид (единственное значение или мас-сив ячеек).

Вы можете использовать различные методы для задания массива структур. Эти методы отличаются способом инициализации полей структуры. В качестве примера расмотрим зада-ние структуры размера 1х3 с именем weather (погода), имеющую поля temp (температура)

и rainfall (дождевые осадки). Три различные способа задания такой структуры даны в приведенной ниже таблице.

Метод

Синтаксис

Задание

Функция struct

weather(3) = struct('temp',72,'rainfall',0.0);

Структура weather(3) инициализируется с указан-ными значениями полей. По-ля остальных двух структур в массиве, weather(1) и weather(2), содержат в качес-тве данных пустые матрицы.

Сочетание функций struct и repmat

weather =

repmat (struct ('temp', 72,

'rainfall', 0.0), 1, 3);

Все структуры в массиве weather инициализируются с использованием одинаковых значений одноименных полей.

Функция struct с использованием синтаксиса ячеек

weather =

struct ('temp',{68, 80, 72},

'rainfall', {0.2,0.4,0.0} );

Структуры в массиве weather инициализируются с разными значениями полей, заданных массивом ячеек.

Обращение к данным в массивах структур.

Используя индексацию массива структур, можно осуществить обращение к данным любого поля или любого элемента поля в массиве структуры. Аналогичным образом, вы можете за-дать значение любого поля или элемента поля структуры. В качестве примера, используемо-го в данном разделе, рассмотрим структуру, представленную на приведенном ниже рисунке.

Вы можете обратиться к подмассивам путем дабавления стандартной индексации к имени массива структур. Например, следующая запись приводит к структуре размера 1х2

mypatients = patient(1:2)

1x2 struct array with fields:

name

billing

test

Первая структура в массиве mypatients совпадает с первой структурой в массиве patient:

mypatients(1)

ans =

name: 'John Doe'

billing: 127

test: [3x3 double].

Для обращения к полю определенной структуры, нужно добавить точку (.) после имени стру-ктуры, с указанием далее имени поля:

str = patient(2) . name

str =

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


© 2010 BANKS OF РЕФЕРАТ