Рефераты
 

Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів

p align="left">Кількість паралельних досвідів вибиралася за формулою:

K ,

K - кількість паралельних досвідів; - критерій Стьюдента; - середня квадратична погрішність; е - довірча точність.

У роботі перебувало по статистичних таблицях при прийнятій довірчій імовірності 0,95. е - ухвалювали рівним 5%. Кількість паралельних досвідів при цьому варіювалося від 3 до 6.

Середнє значення параметра й дисперсія паралельних досвідів визначалися за формулами:

,

де І=1, 2,. . . N

Перевірка відтворюваності проводилася за формулою:

Можливість проведення регресійного аналізу оцінювали однорідністю дисперсій рівно відповідних досвідів (критерію Кохрена):

Gрасч= Gтабл.

Табличне значення критерію Кохрена обчислювалося виходячи з N=8, числа ступенів волі f=k-1, рівень значимості б=0,05 і довірчої ймовірності 0,95. У випадку Gтабл. < Gрасч перебувала дисперсія відтворюваності й помилка експерименту по формулах:

Потім обчислювали коефіцієнт рівняння регресії й взаємодії:

Перевірку статистичної значимості робили по t- критерії, шляхом знаходження

середньоквадратичної погрішності коефіцієнтів регресії:

Далі знаходили довірчий інтервал:

2?bi : ?bi = tкр S(bi)

У випадку не статистичної значимості коефіцієнтів регресії їх виключали. Рівняння регресії перевірялося на адекватність відповідно до критерію Фишера:

Fрасч.

При прийнятій довірчій імовірності 0,95. Якщо Fрасч.? Fтабл., то отримане рівняння аналізувалося.

За відзначеною методикою оброблялися результати всіх експериментів.

Розділ 3. Експериментальні дослідження зносостійкості легованих fe-мn детонаційно-газових покриттів

Заміна композиційних покрити на основі нікелю не можлива без розуміння глибоких теоретичних принципів і масштабних експериментальних досліджень. Як з наукової, так і із практичної точки зору необхідно ясно представляти дороги створення зазначених покрити й галузі їх застосування.

3.1 Обґрунтування вибору легуючих елементів і їх оптимальний зміст у композиційному покритті

Одержання детонаційно-газових покриттів із заданими властивостями зв'язане, на маса перед, з оптимізацією багатокомпонентних систем, де окремі фази їх - матеріал матриці й додані легування виконують комплекс специфічних функцій . Якщо звичайно строк "конструювання" застосовувався тільки до машин, механізмів або встаткування, то зараз, він поширився й на матеріали. "Конструювання" матеріалу (інженерія поверхні [...]) - це одержання заданої його структури й, відповідно, керування й прогнозування експлуатаційних властивостей. Обґрунтований вибір компонентів при формуванні детонаційно-газових покрити з попередньо заданими характеристиками, які мінімізують процеси трибоактування, повинний враховувати комплекс властивостей матеріалів і середовища. Саме такий комплекс повинен сприяти стійкої реалізації універсального явища структурної пристосованості в процесі тертя. Одним з напрямків при цьому є створення багатокомпонентних порошкових сумішей шляхом гетерогенізації й термодиффузійного насичення початкової сировини легуючими елементами. Також, дефіцитність і необхідність раціонального використання нікелю висунуло проблему пошуку його заміни .Даній проблемі присвячені широкі теоретичні й експериментальні дослідження [8]. Автором почата спроба на основі експериментальних і теоретичних узагальнень створити детонаційні безнікелеві покриття, які мають високі властивості, за рахунок цілеспрямованого використання марганцю, як еквівалентної заміни нікелю. З робота [6-8] відомо, що є значні розбіжності між марганцем і нікелем, що як легують елементами й це не дозволяє створювати аустенітні постійні системи

Fe-Mn-Cr, які б не вступали широко відомим системам Fe-Cr-Nі (промислові марки типу Х18Н10, Х23Н18) . Вивчення структурно-фазового складу, триботехнічні досліди [13] і теоретичні принципи про вплив окремих легуючих елементів, дали можливість експериментально оптимізувати склад композиційних покрити системи Fe-mn-cr. Таким чином, раціональне легування елементами вплинуло на фізико-хімічні властивості згаданої системи й існуючий досвід [14] дало можливість створити композиційні покриття, які за триботехнічними характеристиками не уступають нікелевий. Також, слід зазначити високу техніко-економічну доцільність застосування Fe-Mn-Cr покрити в порівнянні з нікелевими. Вибір порошку заліза, як початкової сировини, обумовлений він порівняно дешевиною, не дефіцитністю й розширеної в природі, а також можливістю багатокомпонентного легування з утвором аустенітної структури, особливо для елементів з обмеженою розчинністю. Перевагою стабільних аустенітних структур є відсутність перетворень і стійкість у широкому діапазоні робочих температур . Підкреслимо, що висока розчинність легуючих елементів - є принципово важливою особливістю заліза, як матеріалу основи. При цьому залежності, що легують добавки в, від їхнього внеску в процеси зміцнення розділяють на: елементи, які входять до складу матриці й вносять внесок у твердо розчинне зміцнення (Cr, Co і деякі інші перехідні метали); елементи, які входять до складу фаз, які кріплять тобто створюють дисперсні частки тугоплавких з'єднань (Al, Nb і ін.) і активні елементи, які суттєво поліпшують характеристики в'язкості руйнування й пластичності (N, B). Активні елементи, у результаті великої невідповідності розмірів своїх атомів від атомів матриці, регулюються на границях зерен і в такий спосіб заповнюють вакансії й знижують зерно - граничну дифузію . Марганець має вищу хімічну активність (у порівнянні з нікелем) щодо кисню, азоту, вуглецю, тому існує більша ймовірність переходу його в карбідні й нітридні фази, навіть при наявності в складі композицій сильних нітридо - або карбідо - елементів, що створюють. Це сприяє активному утвору фаз, які кріплять. Крім того, при концентраціях до 15% Mn знижує на відміну від Nі енергію дефектів додавання в аустенітній структурі, чим обумовлює вищу здатність до зміцнення системи Cr-Mn. Оптимальна концентрація Mn, як установлено експериментом, становить 11% . Застосування марганцю сприяє зменшенню коефіцієнта дифузії заліза в аустеніті, який сприятливо впливає на жароміцність. Так само зменшенню рівня пружно - пластичної деформації в процесі активації сприяє введення алюмінію за рахунок зниження ступені розщеплення дислокацій . Відомо термодифузійне насичення порошку заліза, як матеріалу основи, хромом і нікелем. Співвідношення хрому й нікелю при цьому подібно складу аустенітної сталі . З метою підвищення зносостійкості детонаційно-газових покрити порошок заліза був термодифузійним легуванні хромом. Хром, частково розчиняються, збільшує кількість міжатомних зв'язків, зменшує дифузійну рухливість атомів твердого розчину, а це сприяє підвищенню поверхневої міцності напилених покриттів. Також додавання хрому утворює значна кількість фаз, які кріплять, і позитивно впливають власними присутностями у твердому розчині, тому що підвищують його термічну стійкість. Тобто згадані фази гальмують процеси руйнування при високих температурах, за рахунок затримки процесів коагуляції й рекристалізації. Таким чином, вплив фаз, які кріплять полягає в не допустимості або затримці процесів дифузії, які необхідні для атомного обміну в процесах коагуляції й рекристалізації. У роботі [9] увага обігу на те, що хром впливає на розчинність Al, Tі й Ta у фазах, які кріплять. Крім того додавання хрому впливає на утвір різних за будовою й властивостями вторинних структур . Одним з напрямків у розробці зносостійких покрити, які здатні стабільно працювати в умовах підвищених температур і багатогодинних діючих напруг, є стабілізація мікрогетерогенної структури шляхом додавання тонких часток фаз, які кріплять. Ефект зміцнення залежить від ряду факторів. Найважливішої з них є нерозчинність дисперсної фази в металевій матриці, її термічна стабільність і відсутність значного росту часток у процесі експлуатації. Слід зазначити, що найбільш перспективні бориди, нітриди й окисли, тому що вони мають високу термодинамічну стійкість . Існуючи практично без зміни до температур при яких інші фази, які кріплять, з елементів ІVA і VB груп повністю розчиняються в матриці, вони стабілізують мікрогетерогенну структуру й, що особливо важливо, не підвищують при цьому критичну температуру крихкості. Закономірності вибору боридив, нітридив і окислів, у якості фаз, які кріплять. для матриць із Nі й Fe вивчені мало . З метою підвищення зносостійкості покрити за розробленою технологічною схемою були отримані багатокомпонентні порошкові суміші, де окремі гранулометричні частки яких у результаті взаємодії (певної термодинамічними й дифузійними характеристиками) складалися з мікрообсягів декількох компонентів, які відрізняються за хімічним складом. Алюміній, вибраний як легуючий доповнення, по-перше, значно кріпить твердий розчин і

робить внесок у твердо - розчинне зміцнення; по-друге, його головне призначення в тому, щоб, при взаємодії з матеріалом основи утворювати фази, які кріплять і, таким чином, забезпечувати дисперсне зміцнення. Роль фаз, які кріплять для покриттів, що напилюються, значно більш складна й менш вивчена з теоретичної точки зору, чому їхня роль у монолітних матеріалах [2]. Також, на нашу думку, алюміній вигідно відрізняється тим, що активно сприяє утвору плівок окислів, які мають механічну цілісність на поверхні й низьку дифузійну проникливість. У роботі [5] відзначається, що додавання в шихту алюмінію поліпшує триботехнічні характеристики за рахунок екзотермічної реакції при взаємодії з окислами й, тому зменшує пористість і підвищує твердість газотермічних покриттів. Додавання бору обумовлене створенням важливого й великого класу неорганічних з'єднань, які відрізняються значною твердістю, тугоплавкістю, високою хімічною стійкістю. Відповідно до відомих теоретичних вистав бориди ефективно підвищують поверхневу міцність і зносостійкість, тому що вносять відповідний внесок у величину дисперсного зміцнення. Основні закономірності фізико-механічних властивостей металоутворених з'єднань бору сформульовані в роботах [9, 15]. У наслідок різних розмірів атомів і низькою якістю в матеріалі матричної фази бор сегрегірує на зерно граничних вакансіях і знижується швидкість здійснення дифузійних перетворень на границях зерен. При цьому має місце не тільки сегрегація бору в атомарній формі, але й утворення боридів. Основні теоретичні положення раціонального й комплексного додавання легантів і реалізація емерджентного ефекту від загального впливу декількох механізмів зміцнення були досліджені експериментально. Оптимізація композитного порошку для детонаційно-газових покрить системи Fe-Mn-Cr здійснювалася дослідженням впливу легуючих елементів, які додавалися, на певні характеристики покрити. Для алюмінію експериментально встановлений оптимальний зміст становить 8% (мал. 3.1).

а)

б)

Рис. 3.1.1. Характер зміни мікро твердості (а) і інтенсивності зношування (б) залежно від змісту алюмінію.

Потім при встановленій концентрації алюмінію був досліджений вплив бору (мал. 3.1.2). Оптимальний зміст бору 6%. Таким чином, структура й властивості детонаційно-газових покрити визначаються фізико-хімічними характеристиками початкових порошкових матеріалів, які обумовили при напиленні структуру складно легурованого твердого розчину на основі Fe.

Рис. 3.1.2. Характер зміни мікро твердості (а) і інтенсивності зношування (б) залежно від змісту бору.

Зміна фізико-механічних властивостей детонаційно-газових композиційних покриттів системи Fe-mn-cr у процесі гетерогенизации наведене в табл.3.1.

Таблиця 3.1 Фізико-механічних властивостей детонаційно-газових покриттів при цілеспрямованому додаванні легантива.

Тип покриттяя

Товщина

Межа міцності к руйнування, ГПа

Адгезійна міцність зчеплення, мПа

Мікротвердість, ГПа

Fe-Cr

Fe-Cr-Mn

Fe-Cr-Mn-Al

Fe-Mn-Cr-Al-B

0,14ч0,25

0,14ч0,25

0,11ч0,20

0,11ч0,20

0,57ч0,60

0,63ч0,71

0,65ч0,71

0,75ч0,86

43ч47

48ч60

55ч83

71ч96

3,8ч4,4

4,6ч5,7

6,0ч6,9

10,5ч12,1

Використання детонаційно-газового методу дозволило створити певний хімічний склад і одержати структуру, що оптимізувала комплекс властивостей, які потенційно закладені в ньому. При цьому композиційні покриття системи Fe-mn-cr, у першу чергу, необхідно розглядати, як порівняно більш ефективні за економічними показниками, чому нікелеві. А також, за своїми фізико-механічними характеристиками, як наведено в табл. 3.1.1, не уступають широко відоме покриття на основі нікелю або легуванні їм . Значні можливості детонаційно-газового методу пов'язані з регуляцією властивостей покриттів за рахунок додавання до їхнього складу, як структурні складові твердих масел з ламелярной структурою .

3.2. Регуляція параметрів тертя й зношування композиційних покриттів системи Fe-Mn за рахунок додавання до складу масел з ламелярной структурою

застосування дисульфіду молібдену додавання сульфідів металів безпосередньо в композиційні матеріали почалося з використання сірчистого заліза й марганцю, потім сірчистого цинку, міді й свинцю. До теперішнього часу виконана велика кількість досліджень по вивченню властивостей різних сульфідів і їх взаємодії з металом-основою антифрикційних матеріалів. Одним із твердих масел, які здатні розділяти поверхні тертя завдяки утвору плівки, що екранує, яка запобігає зв'язуванню й налипання матеріалів, є дисульфід молібдену. Застосування дисульфіду молібдену як твердого масла певною мірою залежить від умов тертя, зокрема , від складу навколишнього середовища, і влаштоване особливостями його структури. В основному, дисульфід молібдену розглядається як структурне масло, тобто працездатність якого визначається шаруватою будовою її структури. Слід зазначити, що серед деяких сульфідів чия гексагональна структура має щонайкраще виділені зони спайності (сульфіди Tі, W, Mo, Nі, Co, Cr і Al) [58], дисульфід молібдену найбільш досліджений для процесів тертя й зношування. Так, наявність шарів двох різних атомів і міцний зв'язок між ними в горизонтальній площині й більш слабка у вертикальної - забезпечує легке ковзання тонких шарів. Шари володіють високими, опором стиску й здатні витримувати значні навантаження [30]. Використання дисульфіду молібдену [18,25] здійснюється як у вигляді порошків, які втираються в робочу поверхню або наноситься у вигляді плівки на основу або пресуванням на поверхнях у коверлах при змащенні ротапринтим методом. Відомі спроби застосування газополум'яного методу нанесення часток твердого масла в суміші із частками основного матеріалу. Широке поширення у вузлах тертя одержали спечені матеріали, які складаються з металевої матриці й розподіленої в ній твердим маслом.

Однак, залежності, які зв'язують параметри тертя й зношування композиційних покрити, що мають у якості структурних складових MoS2, від величин зовнішніх впливів, тепер вивчені недостатньо. Необхідно відзначити, що в літературі вказуються часом суперечливі значення параметрів терть, які характеризують антифрикційні властивості матеріалів при добавці дисульфіду молібдену. Це, на думку автора, обладнане тим, що випробування здійснюються, як правило, при різних умовах, а також не завжди враховуються всі фактори, які впливають на антифрикційні властивості згаданих покриттів.

3.3 Випробування на зносостійкість композиційних покриттів при терті без змащення

Докладні дослідження в галузі тертя й зношування вітчизняних і іноземних учених розкрили складні причинні - слідчі залежності. Відзначені залежності, обумовлені не тільки значною складністю фізико-хімічних процесів, що протікають у зоні фрикційного контакту, тобто яким прийнято вважати: фізико-механічні характеристики тертьові поверхонь, їх макро- і мікрогеометрію, властивості зовнішнього середовища, швидкість ковзання, навантаження на контакті, температуру, умови й вид тертя.

3.4 Вплив швидкості ковзання й навантаження на опір зношуванню

Для розкриття взаємозв'язків між опором зносу досліджуваних покрити (рис. 3.4.1), їхньою структурою, складом фаз і впливом зовнішніх факторів, які визначають експлуатаційну стійкість вузлів тертя, були використані сучасні фізичні методи дослідження.

Рис. 3.4.1. Залежність інтенсивності зношування від швидкості ковзання для покриттів систем типу: 1- Fe-Mn-Cr-Al-B: 2- Ni-Cr-Si-B-C: 3- WC-Co.

Вивчення зон локалізації структурних складових і кількісний хімічний аналіз здійснювалися методами якісного, а потім наступного кількісного рентгенівського дисперсійного енергетичного аналізу на установці "Lіnk-860". Дослідження вторинних структур і поверхневого шару, тому що саме перебіг процесу трибоактивація впливає на інтенсивність окиснення й схоплювання, здійснювався за допомогою мікро фазового аналізу методами зондової растрової електронної мікроскопії на установці "Самsкаn". Товщина поверхневих шарів з урахуванням порушення становила не менш 1,5 мкм, відносна погрішність виміру - 1%. Для хімічного аналізу вторинних структур і їх складових зон локалізації використовувалася програма ZAF-4/FLS. Також з метою вивчення стану поверхні був застосований метод дифракції електронів. Дослідження проводилися на електронографі ЭМР-100. На мал.3.4 наведена електронограма від поверхні тертя детонаційно-газового покриття системи Fe-Mn-Cr. Характер дифузійного ореолу свідчить, що орієнтована структура поверхні має кристалічна дисперсна будова. Це підтверджується дослідженням хімічної мікро неоднорідності, які проведені на мікроаналізаторі "КАМЕКА" моделі МS-46. При порівнянні відбитків, які зняти в поглинених електронах і в рентгенівських променях, не представлялося можливим ототожнити ділянки структури, виявлені в поглинених електронах з розподілом елементів (Мn, Сr, Al, Fе) у характеристичних рентгенівських променях. Вид розподілу елементів у рентгенівському Кб - випромінювані по Мn, Сr, Al, а також у поглинених електронах представлений на мал. 3.5. Незважаючи на те, що вимір інтенсивності рентгенівського випромінювання проводився в ідентичних ділянках мікроструктури отримані розбіжності в хімічному складі детонаційно-газового покриття підтверджують наявність у ньому не рівномірністю дисперсної структури.

Науково-дослідних робіт, які розглядають характер і інтенсивність структурних змін трибоповерхні й прилягаючих до них мікрообсягів, дуже мало, тому закономірності структурних перетворень у поверхневому шарі багатофазних триботехнічних матеріалів вивчені недостатньо. З позицій структурно-енергетичної теорії доведене, що еволюція процесів механохімічної адаптації обумовлює утвір на поверхнях тертя вторинних структур першого й другого типів, і їх формування здійснюється при кооперативному впливі деформації, нагрівання й дифузії. На підставі даних і з урахуванням робіт [8,15] можна вважати достовірним, що зазначений процес супроводжується диспергируванням структури поверхневого шару й утвором у результаті цього ущільнення й спікання захисних плівок, які полегшують опір зрушенню. Кінетика розвитку пластичної деформації при терті монолітних матеріалів викладена в роботах [10, 15]. У поверхневому шарі залежно від умов тертя змінюється щільність не ідеальна, що виникають при пластичній деформації, а також відбуваються процеси розчинення й утвору структур, які кріплять. Це досліджувалося в роботах [14, 16], але в основному на однофазних пластичних матеріалах. Структурний і хімічний склад шарів, які взаємодіють у процесі тертя, - один з найважливіших аспектів фізики поверхневих явищ у теорії тертя й зносу, однак дотепер проведені нечисленні й несистематичні дослідження в цьому напрямку, який робить дуже складним використання континуальних моделей для аналізу еволюції структур поверхневих шарів. У роботах Л.М. Рибаковой розглянуті деякі результати зміни хімічного складу поверхні матеріалів при терті, а в роботах [16, 20] - в умовах тертя при нагріванні, яке в цілому свідчить про наявність нестаціонарних дифузійних процесів у шарах, які прилягають до вільної поверхні, а також про значне збільшення швидкості дифузії. У цілому можна констатувати, що вплив легуючих елементів і структури гетерогенних матеріалів пара тертя на фазовий склад і властивості поверхневих плівок вивчене не досить. Дослідженнями останніх років переконливо доведена вирішальна роль захисних плівок, які безпосередньо формуються на поверхні в умовах тертя, на триботехнічні характеристики матеріалів. Із усіх факторів відзначених покриттів, які впливають на характеристики, основну частку вносять, по-перше, структура й фазовий склад поверхневого шару, а по-друге, поверхневі плівки, які утворюються при терті. Отже, вивчення будови й властивостей відзначених плівок є необхідним аспектом сучасної фізичної трибології й представляє важливе наукове й прикладне значення для забезпечення стійкого прояву нормальних механохімічних процесів.

З метою всебічного вивчення тонких поверхневих шарів, у яких протікають процеси структурно-термічного активування, додатково був використаний метод вторинної мас - спектрометрії (ВИМС). Даний метод дозволив проаналізувати зміну мікроструктури в поверхневих шарах, установити природу фаз, їх кристалічну структуру і параметри елементарної чарунки, які необхідні для ідентифікації фаз і складу в межах області їх однорідності. При цьому, вторинні іони, які вилучалися з поверхні зразка, досліджувалися квадрупольним аналізатором мас, а енергія первинного іонного пучка становила 10 кэВ. Під час аналізу реєструвалися спектри позитивних вторинних іонів у діапазоні мас 0-100 і т.д. Для підвищення чутливості використовувався динамічний режим роботи. Було підтверджено, що мікроструктура поверхневих плівок має дрибодисперское будова й складається із суміші фаз композиційного покриття й продуктів взаємодії з киснем повітря й за стехіометричним складом є складним важко активізуємим комплексом у вигляді дрибодисперської суміші окислів Cr2O3, Al2O3, Mn2O3 і складних фаз типу хромооксидів MnCr2O4. Крім того, було уточнено, що в нерівномірній тетрафазній структурі, що утворюють дрибодисперсні окисли, фаза Mn2O3 визначається гексагональними ґратами з параметрами, а=0,295 нм, с=0,724 нм; зміст шпінелі відповідає, двом видам MnСr2O4, що має, а=0,825 нм, з=0,844 нм і а=0,583 нм, с=0,841 і різняться ступенем тетрагональності. Установлене появ нових структурних складових, які представляють практично рівномірний розподіл еліпсодреблих фрагментів, які відрізняються додатковим розчиненням боридних фаз у залізній матриці. Також відзначена присутність ультрадисперсних новотворів, які збагачені бором, складу типу МеВ2, МеВ4, МеВ6 і МеВ41. Структуру їх визначають атоми бору, які утворюють міцні пидрешитки з вираженими зв'язками В- В. Певна наявність складних боридних фаз, які легирований марганцем, типу (CrМn) 4B5, (CrМn) 4B3 і інтерметалідних з'єднань алюміндів типу МеАl3, МеАl2, МеАl, а також фаз твердих розчинів на основі моноалюмініда. Крім того, утворений при взаємодії вищих боридів хрому й кисню навколишнього середовища, борний ангідрид (В2О3), який є хімічно активною формою борної кислоти, перетворює окисли металів у метаборат (типу Mn(BO2) 2), а це, відповідно, сприяє утвору на робочих поверхнях грузлої щільної "глазурі". Таким чином, утвір плівок вторинних структур обладнане фазовим і хімічним складом поверхневого шару. Для особливо характерні зміни, які пов'язані із впливом механічних і теплових імпульсів, а також дифузійних процесів легуючих елементів і кисню навколишнього середовища. Слід зазначити, що за своєю будовою об'єкти дослідження - тонкі плівки (вторинні структури) близькі до структури дисперснозміцненого композиційного матеріалу. Такі матеріали, як відомо, мають унікальне з'єднання високої пластичності й міцності, мають високу стабільність відзначених характеристик у часі. Збільшення швидкості ковзання практично не відбивається на зміні триботехнічних характеристик детонаційно-газових покрить. По всьому діапазону випробувань досягається стійка динамічна рівновага між процесами активації й пасивіровки. Саме в цьому обумовлена повна затримка процесів зв'язування. Характер зміни коефіцієнта тертя (мал.3.7), яке визначає втрати енергії у вузлах тертя, збігається із установленою закономірністю тертя й зношування покрити. Зниження коефіцієнта тертя, його стабільність при підвищенні швидкості ковзання свідчить про високу працездатність детонаційно-газових покрить, як на основі легованого порошку заліза, так і твердого вольфрамового сплаву (BKІ5). При даних фазового аналізу структура детонаційно-газових покриття виявляє собою твердий розчин із Гцк- граткою на основі заліза й дрібно дисперсної суміші фаз, які кріплять головним чином у вигляді боридів хрому й алюмінідив заліза (табл. 3.2). Додавання легуючого бору обумовлене утворенням боридних фаз на основі хрому [16], легування алюмінієм - утворення фаз типу FeАl2 і Fe2Al5, склад і властивості яких визначаються наближеністю атомних радіусів елементів, їх хімічним спорідненням, що пов'язане з положенням у періодичній системі [16].

Рис. 3.4 Залежність коефіцієнта тертя від швидкості ковзання, для покрити на основі: 1 - нікелю; 2 - заліза; 3 - твердого сплаву ВК15

Таблиця 3.4 Дані рентгенофазового аналізу покриття системи FE-MN-CR-AL-B.

Структурні фази

Сингонія

Період граток, нм

d/n

и

а

в

с

Cr2B

Ромбічна

1,417

0,741

0,425

2,043

2,590

22°10

17°18

44°20

34°36

Cr5B3

Тетрагональна

0,544

-

1,007

2,01l

0,965

22°30

53°

45°

106°

CrB

Ромбічна

0,296

0,786

0,293

2,350

2,017

22°3023°6

45°

46°I2

Cr3B4

Ромбічна

0,298

1,302

0,295

2,908

2,477

15°24

18°12

30°48

36°24

CrB2

Гексагональна

0,296

-

0,306

1,970

23°3

46°6

FеAl2

Гексагональна

-

-

-

2,06

22°

44°

Fе2Al5

ОЦК

0,356

-

-

1,44

32°18

64°36

МnAl4

Тетрагональна

0,432

-

0,911

1,09

24°14

48°28

Мікроструктура перетинання покрить, які напилювалась композиційним порошком. Покриття копіює рельєф поверхні й стосується його до основи досить щільним. Міцність зчеплення покриття з основою визначалася на спеціальних зразках (методом відриву штифта). При металографічному аналізі перетинання напиленого шару плівки окислів, жужільних складових і інших забруднення на деформованих частках не виявлені. Дефекти у вигляді пар, порожнеч і тріщин не вдалося виявити навіть при х1200. На шліфах покриття знайдені складові слабодеформованих часток, які кріплять. Відповідно до розробленої технології готування композиційних порошкових матеріалів і керуючи технологічними параметрами напиливания можна впливати на рівень дискретності структури покриттів. При цьому змінюються розміри фаз, які кріплять, і відстань між фазовими складовими, що у свою чергу впливає на механічні властивості покрити. На мал. 3.9. представлена структура фаз, які кріплять, у покриттів з хімічно вилученою залізною матрицею. Привертає увагу те, що є можливість регуляції об'ємної частки зазначених фаз, а це дає можливість змінювати їхні фізико-механічні властивості в широких границях і, тим самим, одержувати матеріали, які здатні працювати в різних експлуатаційних умовах. Дисперсне зміцнення тугоплавкими фазами, які слабко взаємодіють із матрицею, є одним з найбільш ефективних способів зміцнення [15, 16]. Однак у теоріях дисперсного зміцнення розглядається вплив часток одного розміру, у залежності, як правило, від об'ємної частки й характеру розподілу [16-18]. Тобто більшість розроблених теорій зміцнення виходять із моделі хаотичного або в чималого наявність включень одного розміру й не враховують розподіли часток по розмірах. У структурі ж реальних дисперснозміцнених матеріалів включення мають широкий діапазон розмірів. Відомо не численна низька робіт [16-17] у яких розглядається вплив ансамблю різних по розмірах часток на процеси деформації.

Значний опір зношуванню при зміні швидкості ковзання досліджуваних детонаційних покрити з леговане порошку заліза обладнане наявністю дрібно дисперческих интерметалідних фаз, які стримують процеси й взаємодії дислокації, міграції між зернах границь. Зазначені фази зменшують імовірність утвору дефектів і зменшуються ступінь структурної активності. Залежність , яка з'єднує зношування із властивостями матеріалів і зовнішніми умовами тертя, установлює, що знос збільшується пропорційно навантаженню й визначається не тільки кількістю контактів хутро поверхнями, але й характером процесів на контактах. До того ж характер цих процесів суттєво залежить від навантаження. Таким чином, навантаження є одним з важливих факторів, які обумовлюють розвиток процесів зовнішнього тертя. Аналізуючи отримані експериментальні дані (мал. 3.13) можна відзначити, що характерним є незначне збільшення зносу з посиленням навантаження й вища несуча здатність (Ркр.) різнойменних пар тертя. У роботі [19] сформульовані деякі правила при виборі матеріалів для пар тертя, зокрема , вказується, що з'єднання твердих матеріалів з гартівними сталями мають високу зносостійкість у результаті малого взаємного проникнення власних поверхонь. Посилення навантаження, як відомо, обумовлює збільшення фактичної площі контакту й, відповідно, молекулярної взаємодії поверхонь. Інтенсивність зношування при цьому небагато збільшується, але, у цілому, вона не пропорційна посиленню навантаження . Це справедливо, поки значення навантаження не переходить через певне критичне значення.

Рис. 3.4.8. Залежність інтенсивності зношування детонаційних покрити від навантаження:

1 - покриття із твердого сплаву ВК15 по ВК15;

2 - покриття із твердого сплаву ВК15 по гартівній сталі 45;

3 - покриття на основі заліза по гартівній сталі 45;

4 - покриття на основі заліза по покриттю на основі заліза;

5 - покриття на основі нікелю по гартівній сталі 45;

6 - покриття на основі нікелю по покриттю на основі нікелю;

7 - зразки з гартівних сталей 45 по сталі 45;

8 - зразку з гартівних сталей 30ХГСА по 30ХГСА.

Інтенсивність зношування покриття з легованого заліза (крива 3) при посиленні навантаження до 6 мПа практично не збільшується, а надалі спостерігається більш-менш рівномірне й незначне підвищення величини зносу.

Таким чином, при збільшенні навантаження інтенсивність зношування покрити на основі легованого заліза небагато росте, але якісно вид зношування не змінюється. Висока працездатність згаданих покриттів у широкому діапазоні навантажень обумовлюється появою універсального явища структурної пристосованості при терті, сутність якого сформульована в роботах [15, 17]. Поверхневий шар покриття в результаті протікання пластичної деформації при терті переходить у термодинамічні не рівномірний активований стан, з якого шляхом адсорбційної, дифузійної й хімічної взаємодії з навколишнім середовищем він прагне стати пасивним. У результаті цієї взаємодії, як установлено, утворюються гетерофазні тонкі плівки - вторинні структури. Зазначені структури виявляють собою суцільну й щільну плівку складу Mn, Cr2O3, Al2O3 і борного ангідриду B2O3. Утвір вторинних структур відбувається в певному діапазоні режимів тертя при наявності динамічної рівноваги процесів активації й пасивування. Якщо в силу дії зовнішніх умов (зовнішнього навантаження) динамічна рівновага зрушується убік підвищення енергії активації, то не утворюється досить міцний і зносостійкий шар вторинних структур, якої захищає основний матеріал пари тертя від безпосередньої взаємодії, і процес тертя відбувається в умовах пошкоджуваності (виникає зв'язування). Так при наступному підвищенні навантаження до 8 мПа відбувається якісна зміна процесу зношування, яке супроводжується швидким збільшенням коефіцієнта тертя й інтенсивності зношування. На бічній поверхні зразка чітко видні кольори мінливості від темно-синього біля кромки поверхні тертя до жовтого на не напиленому торці. З величин критичних навантажень для випробуваних зразків (табл. 3.3) видне, що максимальними значеннями критичних навантажень за даними випробувань володіють детонаційно-газові покриття із твердого сплаву ВК15 і легованого заліза.

Таблиця 3.4. Значення критичних навантажень досліджуваних покрити.

матеріал

Критичне навантаження, мПа

Однойменні пари тертя

Різнойменні пари тертя

Сталь 45

30ХГСА

Покриття з легованого Fe

Покриття на основе Ni ВК15

3,0

2,6

8,1

6,2

8,8

-

-

8,5

7,5

8,8

Значення критичних навантажень для гартівних сталей значно менше. При терті зразків з гартівних сталей (криві 7 і 8, мал. 3.13) процеси, що ушкоджується супроводжуються інтенсивним зкріпленням і виявлені більш характерно. Також спостерігається їхня інтенсифікація при збільшенні навантаження. У роботі [17] підкреслюється, що знос не можна зв'язувати з певної одним властивістю плівки окисла. Знос визначається комплексом властивостей, зокрема , крихкістю, твердістю, міцністю зв'язки плівки окисла з поверхнею основного металу. Для покрити на основі легованого заліза до навантаження 6 мПа основним процесом є механохімічне зношування. Механізм його полягає в безперервному утворі й руйнуванні на поверхнях тертя шарів твердих розчинів кисню в залозі й суміші різних типів хімічних сполук кисню з Fe, Cr, Mn при гнітючій наявності (за даним рентгенофазового аналізу) окисла Fe3O4 і Mn5O4. Збільшення інтенсивності зношування покриття при навантаженні 6 мПа зв'язане за даними рентгеноструктурного аналізу із гнітючим утвором у плівках вторинних структур окисла г-Fe2O3. При наступному росту навантаження до 7 мПа плівки окислів руйнуються більш інтенсивно (мал. 3.12). Коли навантаження росте до 8 мПа разом з утвором і руйнуванням плівок окислів, усе більш помніть значення в процесі зношування починає робити зв'язування. З наступним збільшенням навантаження, зв'язування розбудовується усе більш активно в результаті збільшення фактичної площі контакту трибоповерхні в результаті великого ступеня пластичної деформації мікро обсягів поверхневого шару. Можна відзначити, що інтенсивність зношування й сила тертя менше, якщо поверхневий шар окисла містить окисел Fe3O4 і Mn5O4, а не Fe2O3 і Mn2. Інтенсивність зношування гартівних сталей значно перевищує інтенсивність зношування детонаційно-газових покрить. Продукти зносу, які утворюються в цьому випадку, виявляють собою темно-бурий порошок окислів із гнітючою наявністю Fe2O3. На мал. 3.12 наведені залежності коефіцієнтів тертя від нормального навантаження. По даним мікроструктурного аналізу поверхонь тертя спостерігається зменшення коефіцієнта тертя, тому що він залежить від складу й властивостей плівок окислів і при росту навантаження створюються зона механохімічного зношування. Тобто виникає більш інтенсивний розвиток окисних процесів при збільшення навантаження й, відповідно, температури.

Рис. 3.4.10. Залежність коефіцієнтів тертя детонаційно-газових покриттів від навантаження: 1 - покриття на основі Fe; 2 - покриття із твердого сплаву ВК15; 3 - покриття на основі Nі.

При збільшенні навантаження підвищується ступінь не гомогенності деформації, збільшується розмір продуктів зносу, у процес притягаються глибинні поверхневі обсяги. Сили тертя, які обумовлені деформацією й руйнуванням, збільшуються повільніше чому нормальне навантаження. Певні значеннях навантаження (Pкр), як вказувалося, дуже сприяють, що ушкоджується, яка викликає стрімке збільшення сил і коефіцієнтів тертя. Таким чином, характер зміни коефіцієнтів тертя зі збільшенням контактного навантаження обумовлюється основними процесами, які відбуваються при терті й зношуванні. Аналіз результатів проведених випробувань дозволяє затверджувати, що детонаційно-газове покриття системи Fe-Мn мають високі антифрикційні характеристики, які не уступають покриття із твердого сплаву ВК15.

Страницы: 1, 2, 3, 4, 5


© 2010 BANKS OF РЕФЕРАТ