Рефераты
 

Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів

p align="left">Застосування отриманих детонаційно-газових покрить як зносостійкі дозволяє розширити діапазон нормального зносу в результаті заборони процесів зв'язування за рахунок зниження рівня структурної активації, а також забезпечує мінімізацію параметрів тертя й зношування. Таким чином, детонаційні покриття з легованих композиційних порошків на основі заліза можуть бути використані у важливих важко навантажених вузлах тертя в місце покрити на основі дефіцитного нікелю або дорогого карбіду вольфраму. Триботехнічними характеристики композиційних покрити при підвищених температурах одним з важливим ознак, які характеризують постійний процес нормальної роботи вузла тертя, є сталість температури. Зміна температури, як відомо, впливає на інтенсивність процесів дифузії, швидкість хімічних реакцій і визначає протікання в поверхневих шарах матеріалу пластичної деформації, від якої, в остаточному підсумку, залежить ступінь процесу структурно-термічної активації. Таким чином, температура поверхонь тертя є важливим чинником, зміни якого приводять не тільки до зміни інтенсивності, але й виду зносу . Для експериментальних випробувань детонаційно-газові покриття на основі легованих порошків системи Fe-Мn, нікелю й твердого сплаву ВК15 напилювались, як це вже відзначалося, на кільцеві зразки. Розподіл теплових потоків, обумовлене градієнтом температур визначається не тільки теплофізичними характеристиками пар тертя, але й залежить від величини й площі, на якій вони генеруються. Отже, на умови тепловіддачі великий вплив робить коефіцієнт взаємного перекриття [9, 12]. Форма зразків і вживана схема тертя (торцева) забезпечували коефіцієнт перекриття, який рівняється одиниці. Це сприяло створенню найбільш важких умов тертя. Випробування здійснювали при постійному навантаженні 5 мПа й швидкості ковзання 0,5 м/с. Для дослідження впливу температури на швидкість процесів механохімічного зношування й зв'язування, які протікають у процесі тертя, було передбачене нагрівання зразків під час експерименту до температури 600°С. Нагрівали зразки за допомогою малогабаритного електричного нагрівача. Температуру біля поверхні тертя вимірювали за допомогою спеціальної термопари. Отримані функціональні залежності інтенсивності зношування й коефіцієнтів тертя від температури біля поверхні тертя зазначених покрити представлені на мал. 3.13 і 3.14.

Найменші значення інтенсивності зношування, як видне з випробувань, мають детонаційно-газові покриття з легованого заліза. Збільшення температури практично не погіршує характеристик тертя й зносу, тому що на поверхнях тертя відбувається інтенсивний утвір структур, які мають високими антифрикційними властивостями. Примусовий підігрів інтенсифікує процеси взаємодії поверхні тертя, яка активована пластичною деформацією, з киснем повітря й у результаті чого утворюються рівномірно розподілені по поверхні тертя плівки вторинних структур. Природа їх утвору залежить від умов тертя, матеріалу пари, наявність і складу середовища в зоні контакту.

При терті в нормальних атмосферних умовах на поверхні створюються тонкі плівки окислів . Згідно з даними, наведеними в роботах [18, 19], стабільність боридив і алюминида, який становить основу випробуваних детонаційних покрити, нижче, чим окислів. Продуктами окиснення боридив є окисли металу й борний ангідрид.

Рис. 3.4.11. Залежність інтенсивності зношування від температури:

1 - покриття на основі ніхрому;

2 - покриття твердого сплаву ВК15;

3 - покриття на основі Fe.

Рис. 3.4.12. Залежність коефіцієнта тертя від температури:

1 - покриття на основі ніхрому;

2 - покриття із твердого сплаву ВК15;

3 - покриття на основі Fe.

Фазовий аналіз структур окислів на поверхнях тертя, виконували на установці УРС-50И, але не вдалося однозначно виявити їхній хімічний склад. Це, на думку автора, обладнане незначною товщиною структур окислів. У низьких робіт [28, 28] виражається припущення, що при підвищених температурах критична товщина плівок окислів на поверхнях тертя становить приблизно 10 км, при меншій товщині шару окислів їх захисні властивості зникають. Аналізуючи дослідження, які проведені в роботах [18, 18-19] можна допустити, що плівка окислу на робочих поверхнях складається зі шпінелі Cr2O3 * B2O3 і окислів Cr2O3, Fe3O4 і Mn5O4. У цьому випадку окисли зв'язуються борним ангідридом в аморфну плівку, яка має високі зносостійкі властивості. Наявність B2O3, як підкреслювалося, обумовлене тим, що вищі бориди хрому при взаємодії з киснем навколишнього середовища розкладаються на окис хрому й борний ангідрид, що при підвищених температурах має малу в'язкість і дуже активно взаємодіє з іншими окислами. При наступному підвищенні температури відбувається зміна складу й типу захисних плівок окислів, які утворюються. Так, зниження інтенсивності зношування й коефіцієнта тертя, виникає з того, що на поверхнях тертя по даним хімічного й фазового аналізу збільшуються ділянки, які покриті суцільною плівкою Mn5O4. У деякі роботах [19-21] вказується на взаємозв'язок між механічними властивостями плівок окислів і матеріалом, на якому вони утворюються. Чим твердіше утворюються плівки окислів і м'якше метал поверхонь тертя, тем при меншому зусиллі вони руйнуються. Захисні властивості плівок окислів суттєво залежать від товщини й складу . Окисел Mn5O4 щодо цього має деякі переваги, а саме: більш малої в порівнянні з матеріалом покриття твердістю, стабільністю кристалічних ґрат і відсутністю структурних модифікацій, високою адгезією до основи . Наступне підвищення температури при випробуванні не впливає на вид зносу. Спостерігається стійкий процес нормального механохімічного зношування, якої характеризується відносно низькими значеннями зносу й коефіцієнта тертя, а вони залежать від роботи тертя й, для даного випадку, визначаються механічними властивостями плівок окислів, їх зв'язком з основним матеріалом і здатністю до диспергування. За стехіометричним складом плівки окислів, які утворюються в процесі тертя за даних умов, виявляють собою високотемпературну модифікацію дрібно дисперческої суміші окислів Cr2O3, Al2O3, Mn5O4 і шпінелі MnСr2O4 і FeMn2. Поверхня тертя після випробувань покрити з легованих ніхрому була практично дзеркальної й відповідала шорсткості Ra = 0,32. Макроструктура й мікроструктура робочої поверхні зразка, напиленого порошком системи Fe-Mn-Cr-Al-B, після випробувань при швидкості ковзання 0,6 м/с, навантаженню 1 мПа й температурі 600°С наведена на мал. 3.15 і 3.16. Фазовий аналіз виконаний шляхом рентгенографування на установці УРС-50И в Сі-випромінюванні показав, що за складом покриття після випробувань не відрізняються від початкових. Там у процесі дифузійного насичення в обсязі однієї частки відбувається селективна дія, яка обумовлена термодинамічними й дифузійними характеристиками, між складеними елементами порошкового матеріалу й елементами, які дифундують (бор і алюміній). Так, при дифузійному насиченні порошку заліза, хрому, марганцю разом бором і алюмінієм кожна частка виявляє собою конгломерат з алюмінідів і боридних фаз. Таким чином, зносостійкість детонаційно-газових покрить з легованого заліза системи Fe-Mn-Cr-Al-B при високих температурах обумовлена як характеристиками металевих фаз напиленого шару, так і властивостями плівок окислів, які утворюються й активно перешкоджають процесам контактного зв'язування, за рахунок виключення впливу тертя на основний матеріал покриття й, відповідно, визначають високі антифрикційні характеристики трибопари.

При випробуванні покрити з легованого нікелю зміни інтенсивності зношування, коефіцієнта тертя (мал. 3.4.14. а, б) при підвищенні температури більш виявлені чому в детонаційно-газових покрить з легованого ніхрому й залежать від складу й властивостей плівок окислів, які утворюються на поверхні тертя. Металографічні дослідження й рентгеноструктурний аналіз показали, що це пов'язане з утвором у процесі тертя різних типів плівок окислів, механізм руйнування яких неоднаковий. При температурах до 250°С на поверхні тертя утворюється плівка із суміші окислів Cr2O3 і б-Fe2O3, а останній при підвищенні температура до 350°С переходить у г-Fe2O3. Також при відзначеній температурі на робочій поверхні було виявлене існування ділянок окисла Mn. При наступному підвищенні температури відбувається утвір шпинельних фаз на основі борного ангідриду B2O3. Борний ангідрид активно взаємодіє з іншими окислами. Плівки, які утворюються за даних умов випробувань, запобігають адгезійній взаємодії й розвитку процесів пластичної деформації, активно знижуючи енергію трибоактировання. Цьому обумовлене протікання нормального процесу механохімічному зносу. Наступне підвищення температури при випробуванні виявляє тенденцію до росту інтенсивності зношування покрити на основі нікелю. Відомо, що інтенсивне окиснення поверхонь тертя приводить до збільшення товщини плівки окисла. У роботі [16] відзначається, що позитивний вплив окиснення поверхні тертя на її антифрикційні властивості до певного ступеня окиснення. У гетерогенних структурах при окисненні залежно від споріднення металу до кисню й швидкості дифузії металу в шарі окисла, відбувається збагачення або зубожіло плівки окислів елементами, які входять до складу покриття [17]. При даним проведеного рентгенофазового аналізу в інтервалі температур 450°С - 500°С відбувається утвір окислу Fe3O4, більш пишного й менш щільного чому г-Fe2O3. Продукти зносу виявляють собою порошок темно-бурого кольору. Відхилення від нормального процесу механохімічного зношування відбувається в результаті теплових перевантажень, які обумовлюють утвір локусів зв'язування за рахунок високого градієнта й інтенсивного збільшення температури в поверхневих шарах і породжують стан "термічної" пластичності. У процесі теплового зношування температурне поле поширюється в глибину матеріалу й у результаті нагрівання розм'якшуються контактні поверхні. При цьому інтенсифікує процес деформації поверхневого шару матеріалу покриття під плівкою окисла, яка обумовлює її руйнування й розвиток адгезійної взаємодії, яка веде до утвору металевих зв'язків. Інтенсивність зношування й коефіцієнт тертя, як випливає було очікувати, мав по даних умовах експеримента найбільші значення. При наступному збільшенні температури тепловий знос переходить у високотемпературне механохімічне зношування і яке зберігається як провідний вид зносу при росту температури випробувань до максимальної - 600°С. Зношування при цих температурах має механохімічну природу й характеризується деяким зменшенням значень інтенсивності зношування й коефіцієнта тертя завдяки високій швидкості протікання процесів окиснення на поверхнях тертя й тим самим забезпечується утвір суцільних плівок окислів. Зазначені плівки перешкоджають розвитку контактного зв'язування. Характерна мікроструктура поверхонь тертя для діапазону значень високотемпературного механохімічного зношування наведені на мал. . З наведених мікрофотографій видне, що поверхневі плівки в деяких місцях мають поперечні й поздовжні мікротріщини. Імовірно, що цей факт можна пояснити мікронапругами, які при певних випадках обумовлюють нестійкість їх пружного й пластичного стану. Тому що на границях зерен відбувається накопичення крайових дислокацій, які не встигають аналізувати , а це є причиною росту в цих місцях локальних концентрацій напруга до деякого граничного значення й утвору таким способом мікротріщин. Надалі руйнування плівок поверхневих шарів відбувається за рахунок їх м'якого викрашування з наступним видаленням продуктів зношування із зони тертя.

Проведені експерименти з детонаційно-газовими покриттями в умовах повітряного середовища показали, що залежно від температури спостерігається перехід від механохімічного зношування до теплового, а від теплового - знову до високотемпературного механохімічного. Зазначений перехід обумовлюється головним чином величиною коефіцієнта дифузії, який залежить від температури. У роботі [38] підтверджується, що основним механізмом, який приводить до аномального посилення процесів дифузії, дислокаційний. Умови терть, які обумовлюють тепловий знос, сприяють прояву зв'язування, тому що збільшується пластичність і полегшує можливість контакту трибоповерхонь, а це є необхідною умовою для прояву зв'язування. Інтенсивність теплового зношування в повітряному середовищі більше чим інтенсивність механохімічного зношування, тому що, в умовах підвищених температур у зоні контакту, у силу високоенергетичних впливів на активізованих поверхнях тертя має місце твердофазна хімічна взаємодія. Такий тип взаємодії веде до утвору плівок вторинних структур, які, в умовах механохімічного зношування виявляють собою щільні й суцільні плівки окислів, а вони перешкоджають розвитку процесів контактного зв'язування й у результаті чого зменшується інтенсивність зношування й коефіцієнт тертя. Значення параметрів тертя й зношування детонаційно-газових покрить системи Fe-Mn-Cr-Al-B, які отримані при випробуваннях в умовах повітряного середовища, дозволяють рекомендувати їх для практичного використання у вузлах терть, які працюють при підвищених температурах (мал. 3.4.15). Як видне (крива 2) для покрити із твердого сплаву ВК15 при температурі 520 °С наступає зв'язування, тому що збільшення температури викликає інтенсивне окиснення карбіду вольфраму й розм'якшення єднальної основи (кобальту). Таким чином, стрімке зростання енергії термічної активації обумовлює зниження триботехнічних властивостей покриття.

При цьому активно розбудовується знос зв'язуванням, а це приводить до катастрофічного процесу, що ушкоджується. Відзначена обставина обмежує можливості застосування покрити із твердого сплаву на основі вольфраму ВК15 при підвищених температурах у повітряному середовищі. На мал.3.18 наведені мікрофотографії поверхні тертя покриття із твердого сплаву ВК15. Типовим є неприпустима, що ушкоджується і яка проявляється у виникненні локальних металевих зв'язків, деформації, руйнуванні, у наслідок налипання, намазування й переносу матеріалу покриття. При такому виді зношування швидкість процесу утвори металеві зв'язків перевищує швидкість інших процесів і стає головною.

Випробування детонаційно-газових покрить в повітряному середовищі при підвищених температурах довели високі зносостійкі властивості розробленого покриття. У такий спосіб детонаційно-газові покриття на основі заліза легованих Mn-Сr-Аl-В можуть бути використані у вузлах тертя, які працюють при підвищених температурах в окисному середовищі.

3.5 Визначення оптимального змісту дисульфіду молібдену в покритті

Для реалізації процесу тертя з мінімальними трибо технічними властивостями була здійснена наступна гетерогенізація багатокомпонентної структури на основі легованого заліза системи Fe-Мn за рахунок додаткового додавання до складу детонаційних покритий диспергированого дисульфіду молібдену (Патент 2000021109, МК ИС23С 14/14, В22. F9/00/. В.І. Колісник, О.І. Щепотьев, М.М. Мусієнко й ін. від 25.02.2000). Визначення оптимального змісту MoS2 (керована змінна) у легованому порошку заліза щодо інтенсивності зношування, здійснювалося дослідним шляхом (мал.3.19). Виходячи з науково-методологічних положень вивчення процесів тертя й зношування й запропонованої математичної моделі паралельно проводилися виміри адгезійної міцності зчеплення (усц) і мікротвердості (Hм) поверхневих шарів детонаційного покриття. У результаті експерименту були отримані залежність і побудована функція відкликання:

Рис. 3.5.1. Залежність інтенсивності зношування покриття від змісту MoS2.

Рис. 3.5.2. Побудова функції відкликання (Іh) від вибраних факторів.

Мінімальної інтенсивності зношування 3,5 мм3/див2*1000м відповідає зміст дисульфіду молібдену 8%(мас.), показники адгезійної міцності й мікротвердості - 98,2 МПа й 11,46 ГПа. У цьому випадку частки твердого змащення рівномірно розподілені по товщині композиційного покриття і їх кількість виявляється достатнім, щоб забезпечити його високі антифрикційні властивості. При меншій кількості дисульфіду молібдену ефект самозмазування в покритті не досягається. Покриття з більшим змістом Mos2 розпушується, його несуча здатність значно знижується. Була відпрацьована технологія одержання композиційних порошків, які містять у якості одного з компонентів диспергирований дисульфід молібдену. Частки твердого масла, як було експериментально встановлене, винні відповідати фракціям 1-6 мкм (при чистоті до 98%) змішувалися з композиційним порошком легованого заліза "мокрим" способом протягом 1,5 години. Гідності цього способу виробництва композиційної суміші для напилювання полягає колись у більш міцному зчепленні Mos2 із частками основного матеріалу, а також у більш сильному змісті часток твердого змащення в мікрорельєфі поверхні. Суміш сушили при температурі 140-160 °С до повного видалення вологи. Розшарування основного матеріалу із твердим змащенням при цьому не спостерігалося. Приготовлені таким способом композиційні порошкові склади по режимах і методиці, описаної в другому розділі.

3.6 Дослідження триботехнічних характеристик композиційних покрити, що містять MoS2, у нормальній атмосфері

Випробування на зносостійкість детонаційно-газових покриттів , що містять дисперговані дисульфід молібдену, проводили на установці УМТ-1 (схема контакту " торець-торець") при зміні швидкості ковзання від 0,1 до 1,0 м/с і навантаженню 5 мпа. Залежність інтенсивності зношування від навантаження досліджували при постійній швидкості ковзання - 0,8 м/с. Для дослідження сумісності матеріалів, що в задані на грузочно - швидкісних режимах тертя забезпечують стійкий прояв структурної при торканні, детонаційно-газові покриття з MoS2 випробували, як в однойменних парах тертя, так і в парах з гартівними сталями 45,ХВГ, 30ХГСА й бронзою Бр ОЦС-6-6-3. Вплив швидкості ковзання на інтенсивність зношування, коефіцієнт тертя й температуру в контактній зоні покрити, що містять тверде змащення, представлену на мал. 3.6.1.

Рис. 3.6.1. Вплив швидкості ковзання на інтенсивність зношування, коефіцієнт тертя й температуру покрити системи Fe-Мn із уведенням Mo2:1 - інтенсивність зношування; 2 - коефіцієнт тертя; 3 - температури.

Як видне, що незважаючи на підвищення температури в зоні тертя, збільшення швидкості ковзання приводить до зниження інтенсивності зношування й коефіцієнта тертя. На всьому діапазоні швидкостей ковзання коефіцієнт тертя перебуває в межах 0,15 - 0,06. Існують багато гіпотез, які пояснюють низьке значення коефіцієнта тертя мастильних матеріалів і, зокрема , Mo2. У роботі [15] запропонована модель механізму мастильної дії, відповідно до якої антифрикційність твердих ламелярних речовин залежить від енергії зв'язку між площинами, характеру адсорбційної взаємодії, яка визначає зміна поверхневої енергії. Однак виражені припущення недостатні для пояснення всього різноманіття відомих експериментальних фактів (наприклад ефекту "аномально низького" тертя MoS2). Аналіз існуючих вистав про механізми тертя ламелярних твердих мастильних матеріалів і даних експериментальних досліджень дозволили затверджувати, що поверхнева енергія площин базису (0001) дисульфіду молібдену вкрай мала, а взаємодія між окремими шарами

S-Mo-S дуже слабке. Звідси випливає, що дисульфіду молібдену винний забезпечувати досить низькі значення коефіцієнта тертя без участі адсорбуючих атомів або молекул. Більше того, адсорбція в атмосферних умовах речовин, які вступають у взаємодію із сіркою, а тим більше з атомами опозиційно розташованих шарів сірки, винна стримувати переміщення шарів друг щодо друга. Численні експериментальні дані представляють таку точку зору. Так, відомо, що на відміну від графіту, дисульфіду молібдену володіє у вакуумі вищими антифрикційними властивостями . На нашу думку , є розбіжності в описі основного механізму мастильної дії ламелярних матеріалів не перебувають у протиріччі, а скоріше підтверджують більшу складність розглянутого синергетичного явища. На рис. 3.6.2 представлена залежність мікротвердості покриття від змісту MoS2. Однак, незважаючи на те, що введення диспергованих часток MoS2 до складу покриття знижує мікротвердість, зносостійкість його суттєво росте. Таким чином, максимальна твердість не завжди відповідає високої зносостійкості. Тому що зносостійкість у переважній більшості випадків виявляє собою інтегральну характеристику складної взаємодії різних факторів у процесі тертя.

Рис. 3.6.2. Залежність мікротвердості покриття від змісту MoS2.

Утвір плівки MoS2 у процесі тертя супроводжується заповненням нерівностей, завдяки чому збільшується загальна контактна поверхня. Металографічне вивчення зовнішнього вигляду поверхні тертя показало, що при цьому формується шар мастильної плівки MoS2, у самих тонких поверхневих шарах, які відбувається інтенсивна й спрямована пластична деформація. На далі, внаслідок комплексу скороминучих динамічних процесів контактної взаємодії, під впливом локальних температур і лещат утворюється гетерогенна структура. Вона складається з м'якої плівки дисульфіду молібдену й твердих фаз складених окислів металів, які входять до складу покриття (Cr2O3, Al2O3, Fe3O4). Таким чином, частки окислів, втілюючись до м'якої ламелярної структури MoS2, викликають різке припинення й запобігають їхній пластичній деформації. Що, у свою чергу, обумовлює стрімке зниження рівня енергії трибоактивації. Мікрофотографія розподілу MoS2, знята в рентгенівських променях на мікроаналізаторі "Самека" моделі МS-46, наведена на мал. 4.6. Частки твердого масла розподіл достатній рівномірно. Стабільність здійснення ефекту самозмазування в процесі тертя досягається внаслідок поновлення шару тертя масла за рахунок Mos2, який вході до складу матеріалу покриття. Дослідження показали, що локалізація пластичної деформації в процесі тертя йде в самих тонких поверхневих шарах плівок і виявляє собою структури на зразок "луска" з товщиною 2-5 мкм. Відповідно до принципів термодинаміки, взаємодії під час тертя йдуть у мінімальних обсягах, у цьому випадку - тонких плівках зі структурою типу "луска", які здатні до свого руйнування поглинати максимальну енергію. Рис. 3.25. Мікро рентгеноструктурний аналіз покриття в рентгенівському характеристичному випромінюванні Mos2Kб (x650). Стан, характер і властивості робочого шару, який виникає безпосередньо в процесі тертя, обумовлюється процесами диспергировання, механіко-хімічного насичення частинами окислів, інтерметалідів, їх змішумання з матеріалами твердого масла й утвором нових фаз, з характеристиками й структурою, яка аналогічна зміцненим-дисперсно-укріпленим матеріалам. Таким чином, у період постійного процесу механіко-хімічного тертя, який характеризується мінімальними коефіцієнтами тертя й зносу. Поверхневий шар, який розділяє трибоповерхню , складається із дрібнодисперсної суміші окислів металів, інтерметалідів розподілених тонкому шару твердого масла.

У роботах є спроба альтернативного пояснення механізму мастильної дії ламелярних твердих масел, у якій зниження коефіцієнта тертя зі збільшенням навантаження пояснюється тим, що підвищення навантаження полегшує умови для найбільш сприятливої орієнтації часток MoS2. Дана залежність, обумовлена силами міжмолекулярної взаємодії: збільшення навантаження тягне зближення молекул MoS2, що веде до росту сил відштовхування й, як наслідок цього, до зниження опору при зрушенні. У дослідженні навпаки, констатується, що при підвищенні навантаження коефіцієнт тертя по твердій плівці MoS2 небагато збільшується. Більша працездатність вивчаємих композиційних покриттів з MoS2, досягається завдяки зменшенню рівня структурної активації поверхневих шарів, внаслідок регуляції властивостей у вторинних структур, що обладнаною затримкою знаходження кисню до поверхні, яка пластично деформується, високим ступенем орієнтації часток дисульфіду молібдену в процесі тертя. А також, особливістю структури покриттів і, як наслідок, високої локалізації пластичної деформації в надтонких шарах твердого масла. На мал. 3.27 наведена електронна світлина вторинної структури на покритті з легованого заліза з MoS2. Вторинна структура гетерогенна, характер розподілу дисперсних включень сорочечний і має орієнтацію в напрямку вектора швидкості ковзання. Ця обставина є підтвердженням того, що при формуванні вторинних структур вирішальну роль відіграють процеси структурної активації. По своїй будові дана структура близька до структури дисперсно-зміцненого композиційного матеріалу. Як відомо, такі матеріали мають унікальне з'єднання високої пластичності, міцності й мають високу стабільність характеристик в умовах експлуатації.

Таким чином, введення диспергованого дисульфіду молібдену до складу композиційного покриття з легованого заліза забезпечує ефективне змащення поверхонь у контакті. На трибоповерхнях утворюється захисна плівка на основі MoS2, які в процесі тертя постійно відновляється й обновляється. Наявність поділяючий плівки твердого масла забезпечує мінімізацію триботехнічних параметрів і належний рівень антифрикційних характеристик покриттів, які досліджувалися.

3.7 Оцінка рівня залишкових напруг у поверхневих шарах досліджуваних покрити

Покрити який формуються при детонаційно-газовому напиленні мають складну геометрію структурних складових і насичені неоднорідністю. У процесі напилення виникають термічні й структурні напруги, які створюють певний стан покриття. Тобто такі покриття відрізняються від компактних матеріалів дуже складною геометрією структурних складових. Напилення викликає виникнення цілого ряду неоднорідностей, таких як внутрішні границя п'яти типів, порушення стехіомерії складу, фазові розбіжності багатьох часток. Крім того, має місце деформація часток, яка супроводжується дробленням периферійних зон. При цьому кількість структурних дефектів, їх загальний вплив на характеристики залежить головним чином від фізико-хімічних властивостей порошкових матеріалів і умов нанесення покрити, а визначальної стає залежність міцності й пластичності від товщини покриття. Тому що процеси детонаційно-газового напилення характеризуються широким діапазоном швидкостей охолодження послідовних потоків часток, які формують покриття. Швидкість охолодження перших шарів, які осаджуються, - 106-108°С шари, що випливають, осаджуються на розігріті до 200-350 С напилюванні поверхні й прохолоджуються з меншою швидкістю. Температурні градіенти викликають термічні напруги, що з одного боку, з'єднуються з навантаженнями, які викликані розбіжностям коефіцієнтів термічного розширення, а, з іншого боку, виникненням навантаження, що обумовлені структурними перетвореннями, зміною питомих обсягів фаз при поліморфних переходах, дифузією й хімічними реакціями. Крім того, швидкість охолодження також є однією із причин структурної неоднорідності й появи дефектів. Таким чином, поверхневе руйнування покрити може відбуватися під впливом не тільки напруга, що виникають у процесі пружно-пластичний деформації при терті, але й залишкових напруг, що виникають у покриттях у процесі його формування. У цілому можна допустити, що напилення покрить з'єднане з реалізацією певного напруженого стану, який обумовлює експлуатаційні можливості всієї системи тертя. Як показує аналіз умов роботи деталей машин з покриттями, втрата працездатності відбувається в основному не від несумісності системи покриття - навколишнього середовища - покриття, а завдяки руйнуванню покриття, за розрахунків утвір поверхневих тріщин . При дослідженнях покрити на відрив величина й розподіл залишкових напруг значною мірою впливають на зниження міцності зчеплення , а характер руйнування є функцією властивостей досліджуваного покриття.

3.8 Величина й рівень технологічних залишкових напруг і їх вплив на зносостійкість напилених покриттів

Рівень залишкових напруг є в багатьох випадках важливим параметром, який визначає якість детонаційно-газових покрить. Так, при дослідженні на відрив наявність цих напруг значно впливає на зниженні міцності зчеплення . Визначення міцності зчеплення покрити, як відзначалося, робили за допомогою спеціальних зразків, які складаються із втулки й штифта . Після попередньої підготовки поверхні (піскоструминної обробки й знежирення) напиляють покриття. Потім звільняють фіксуючий гвинт і відриваються штифт від покриття. Знаючи силу відриву й площа торця штифта, визначають міцність зчеплення (рис. 3.8.1). У якості - підбивки була використана сталь 45.

Рис. 3.8.1. Залежність міцності зчеплення від товщини напилюваного покриття.

Збільшення товщини покриття до 0,18 - 0,20 мм веде монотонного збільшенню зусилля, яке необхідне для відриву штифта, і після досягнення величини 100 мПа наступне наростання товщини супроводжується зменшенням міцності зчеплення. Причини, які приводять до наявності максимуму на кривій бсц=f(д), на наш погляд, обумовлюються тим, що в області малих товщин має місце, переважно, когезійне руйнування. Таким чином, значення, отримані при іспитах, у певної мерові відбивають не міцність зчеплення, а міцність самого покриття, підтверджуючи тим самим, що при детонаційному напиленні ступінь взаємодії близький до одиниці . Мала товщина напиляного шару (0,1 мм) викликає прорив покриття, при збільшенні товщини міцність зчеплення небагато росте, але залишається незначної й при іспитах має місце деформація напиляного шару над штифтом, його прогин і розтріскування. У результаті росту товщини покриття відбувається придушення цих явищ, яке виражається в збільшенні фіксуємої при іспитах міцності. У той же час збільшення товщини покриття супроводжується наростанням внутрішніх напружень у системі покриття - основа, результатом чого є зниження міцності зчеплення. І руйнування при цьому, як правило, носить адгезійний характер. Таким чином, працездатність і довговічність детонаційних покрити залежить від величини й характеру розподілу залишкових напруг. Високі значення залишкових напруг є причиною появи або мікротріщин відшарування покрити. Однак, незважаючи на формальну ясність основних фізичних процесів, які викликають залишкові напруги в напилюваних покриттях, тепер , хоча й існує відносно велика кількість різних залежностей, які дозволяють розрахувати залишкові напруги, застосовувати їх повною мірою неможливо через безліч допущень, які вводяться, наслідком яких є неточність обчислень. У науково-дослідних роботах, присвячених характеристикам детонаційних покрити, дуже обмежені зведення про технологічні залишкові напруги, що розкривають якісні залежності зносостійкості, відсутні дані про вплив термічної обробки на їхні величини й розподілу. Структуроутворення при формуванні детонаційних покрити підкоряється загальним закономірностям, характерним для напилюємих покрить.Одним з методів вивчення, які зарекомендували себе, технологічних залишкових напруг є методом Н. Н. Давиденкова, що дозволяє визначати характер розподілу, глибину залягання й величину залишкових напруг у досліджуваних покриттях . Метод Н. Н. Давиденкова дозволяє визначити характер розподілу залишкових напруг, їх величину й глибину залягання за допомогою приладу, що дозволяє записувати зміни стріли прогину зразка в процесі невпинного підбурювання напиляного шару. Зняття шарів матеріалу здійснювалося за допомогою електролітичного травлення, склад, концентрація й режим підбиралися так, щоб швидкість травлення становила 3-5 мкм/хв, при цьому напруга на електродах відповідало 10 В, щільність струму - 15 А/дм2, а температура електроліту 25 °С. Склад електроліту - 850 див3 фосфорної кислоти (питома вага 1,56), 150 див3 - сірчані кислоти (питома вага 1,89) і 50 м хромового ангідриду. Поверхні зразка, які не повинні піддаватися травленню, захищалися сумішшю парафіну й каніфолі (2:1). Невпинний запис прогину здійснювався за допомогою індуктивного датчика й передавалася на самопис БВ-662, де фіксувалася залежність прогину від часу. Наконечник датчика опирався на корундову пластину - опору діаметром 4 мм і товщиною 1,5 мм Досліджувані залишкові напруги значно змінюються в межах поверхневих шарів. У цьому випадку для одержання належної точності потрібно послідовне видалення дуже тонких шарів. Ініційоване цим видаленням перерозподіл напруг викликає переміщення, яке можна замірити, а потім обчислити залишкові напруги в питомій частині. Дуже важливим є також точне обчислення величин. Зразки для визначення залишкових напруг мали форму пластин з розмірами: товщина - 2-3 мм, ширина 10-12 і довжина 50-60 мм У дослідженнях визначалися напруги 1 роду - макронапруги, які виникають у детонаційних покриттях у результаті взаємодії різних технологічних факторів при його формуванні. При детонаційно-газовому напиленні покрити, що рухаються з великою швидкістю частки, нагріті до високої температури, послідовно нашаровуються після кожного пострілу спочатку на поверхню основи, потім на вже нанесені частки, що значно остигають. У процесі напилювання значного підвищення температури не відбувається, що тому прохолоджуються після удару частки стискуються більше, ніж метал основи, у результаті цього при нормальній температурі в напиляному гетерогенному шарі покриття виникають технологічні залишкові напруги, що залежно від ряду факторів можуть бути що розтягують, що стискають або ж змінними за знаком.

3.9 Розподіл технологічних залишкових напруг по товщині детонаційних покрити

У результаті досліджень були визначені й проаналізовані розподіли залишкових напруг по товщині композиційних покрити на основі нікелю й заліза. Відповідно до методики іспитів для побудови однієї кривій розподілу напруг по глибині покриття було досліджено по трьом зразка, тому що розкид даних усередині однієї партії в значній мірі залежить від напляємих матеріалів. Найменший розкид при іспитах мали зразки з композиційним покриттям на основі карбідів, а найбільший розкид усередині партії відповідав покриттям на основі нікелю й заліза. Природно допустити, що менший розкид напруг усередині партії покрити на основі карбідів обумовлений протіканням активних дифузійних процесів у цій композиції, яка підтверджується результатами структурних і фазових досліджень. Відповідно для композицій на основі нікелю й заліза навпаки, їхні матеріали найбільш чутливі до технологічних параметрів детонаційно-газовому напилюванню. Для детонаційних покрити на основі заліза й нікелю залежність залишкових напруг характеризується високими значеннями, які розтягують, у результаті утвору нових структурних фаз, які відрізняються питомими обсягами, що й приводить до виникнення напруженого стану областей, зайнятих знову утворювалися й пов'язаними з ними фазами. Напруги, що виникають у результаті зміни обсягів фаз, градієнтів концентрації елемента, який дифундує, можуть також досягати - величин, при яких з'являються пластичні або деформації тріщини . Необхідно підкреслити, що в більшості випадків експлуатації варто прагнути до напруг стиску в покриттях як найбільш безпечним. На рис. 3.9.1 представлені графіки розподілу залишкових напруг покрити на основі заліза. Максимум залишкових напруг небагато зміщений від поверхні усередину покриття. Зі збільшенням товщини покриття величина залишкових напруг росте. Зі збільшенням глибини залягання залишкових напруг їх величини зменшуються.

Рис. 3.9.1. Розподіл залишкових напруг у покриттях на основі заліза залежно від товщини:

1 - 100 мкм; 2 - 200 мкм; 3 - 300 мкм.

Зразки, напилені композиційним порошком на основі нікелю, також досліджувалися залежно від товщини покрити, що становила 200, 300, 400 і 500 мкм. Іспиту цієї партії зразків показало, що в зразках при всій товщині покрити спостерігається залишкова напруга, що розтягують.

Як випливає з графіків характеру розподілу залишкових напруг, максимум залишкових напруг перебуває на деякій відстані (40-80 мкм) від поверхні. Зі збільшенням глибини їх залягання, після максимуму, різко падає. Поблизу основи зразка величина напруг сходить на немає. Глибина залягання, в основному, відповідає товщині покриття.

Таким чином, величина залишкових напруг значно росте при збільшенні товщини напилюваних покрить.

3.9.1 Вплив термічної обробки на величину й розподіл залишкових напруг у покриттях

Однієї з найбільш доступних і ефективних в умовах виробництва технологічних операцій для зняття залишкових напруг є термічна обробка - відпалу, у результаті якого змінюються величина й характер розподілу залишкових напруг, Зміна в розподілі тем помітніше, чим вище температура відпалу. Відпал досліджуваної партії зразків проводився при температурах 300, 400 і 600 оC.

Характер розподілу залишкових напруг після відпалу при температурі 300 оC представлений на малюнку. Величина напруг помітно зменшилася, особливо різко зменшуються напруги в покриттях більших товщин. Крім того, у покриттях малих товщин зі збільшенням глибини залягання залишкові напруги, що розтягують, переходять у стискаючі. Глибина залягання залишкових напруг також в основному відповідає товщині покриття.

Характер розподілу залишкових напруг після відпалу при температурі 400 оC змінюється ще більше (малий.5.6). У цьому випадку величина напруг продовжує зменшуватися й при товщинах покрить менш 0,5 мм вони переходять у стискаючі. Величина стискаючих напруг тим більше, чим менше товщина покриття. Зі збільшенням глибини залягання величини напруг зменшуються й поблизу поверхні сходять на немає.

Рис. 3.9.1.2. Розподіл напруг після отжига (400 оС). Товщина: 1-200 мкм; 2-300 мкм; 3-400 мкм; 4-500 мкм.

Підвищення температури отжига до 600 єС приводить до наступного перерозподілу залишкових напруг у бік зменшення їх абсолютної величини. Це презентовано на рис. 3.9.1.3. Зменшилися залишкові напруги, що розтягують, при більших товщинах, зменшилися майже вдвічі стискаючі напруги. Таким чином, при цій температурі відпалу величина напруг у порівнянні з не відпаленими зразками набагато нижче.

Рис. 3.9.1.3. Розподіл напруга після отжига (6ОО ?С). Товщина: 1-200 мкм; 2-300 мкм; 3-400 мкм; 4-500 мкм.

Знак залишкових напруга багато в чому залежить від з'єднання коефіцієнтів термічного розширення матеріалів основи й покриття [206]. Коли коефіцієнт термічного розширення напилюваного матеріалу рівняється або більше коефіцієнта термічного розширення основи, у напиленому покритті виникають залишкові напруги, що розтягують. В інших випадках можуть виникати стискаючі залишкові напруги. При напилюванні покриття на основі заліза зразок з вуглецевої конструкційної сталі 45 різниця в коефіцієнтах термічного розширення незначно. Ніж тонше шар покриття, тем менше різниця в прилягаючих шарах покриття й основи. Отже, зі збільшенням товщини напилюваного шару буде, в основному, виявлятися різниця в коефіцієнтах термічного розширення в розмірах нагрітих і охолоджених часток і у вже напилюваних шарах, що значно остигають. Тому зі збільшенням товщини покриття залишкові напруги ростуть. Це погодиться з розподілом залишкових напруг. Термічна обробка зразків при різних температурах приводить до перерозподілу залишкових напруг. Зі збільшенням температури відпалу характер розподілу залишкових напруг змінюється. Спостерігається помітне зменшення залишкових напруг спочатку в більш товстих покриттях, а потім і в більш тонких покриттях, коли напруги із що розтягують переходять у стискаючі. Як відомо, будучи важливою характеристикою стану поверхневих шарів деталей машин, внутрішні напруження розтягування знижують тимчасовий опір, а напруги стиску можуть збільшувати втомну міцність, аналогічне явище внутрішні напруження роблять на границю витривалості. Таким чином, на підставі проведених іспитів можна зробити висновок про те, що в поверхневих шарах, підданих зміцненню шляхом детонаційно-газового напилення, виникають залишкові напруги, що по своїй абсолютній величині не небезпечні для поверхневого шару з погляду його цілісності і якості. Оптимальна товщина напилюваних детонаційних покрить, відповідає максимальної зносостійкості, становить 180-250 мкм.

Страницы: 1, 2, 3, 4, 5


© 2010 BANKS OF РЕФЕРАТ